Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 26: e48572, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700923

ABSTRACT

BACKGROUND: Adverse drug reactions (ADRs), which are the phenotypic manifestations of clinical drug toxicity in humans, are a major concern in precision clinical medicine. A comprehensive evaluation of ADRs is helpful for unbiased supervision of marketed drugs and for discovering new drugs with high success rates. OBJECTIVE: In current practice, drug safety evaluation is often oversimplified to the occurrence or nonoccurrence of ADRs. Given the limitations of current qualitative methods, there is an urgent need for a quantitative evaluation model to improve pharmacovigilance and the accurate assessment of drug safety. METHODS: In this study, we developed a mathematical model, namely the Adverse Drug Reaction Classification System (ADReCS) severity-grading model, for the quantitative characterization of ADR severity, a crucial feature for evaluating the impact of ADRs on human health. The model was constructed by mining millions of real-world historical adverse drug event reports. A new parameter called Severity_score was introduced to measure the severity of ADRs, and upper and lower score boundaries were determined for 5 severity grades. RESULTS: The ADReCS severity-grading model exhibited excellent consistency (99.22%) with the expert-grading system, the Common Terminology Criteria for Adverse Events. Hence, we graded the severity of 6277 standard ADRs for 129,407 drug-ADR pairs. Moreover, we calculated the occurrence rates of 6272 distinct ADRs for 127,763 drug-ADR pairs in large patient populations by mining real-world medication prescriptions. With the quantitative features, we demonstrated example applications in systematically elucidating ADR mechanisms and thereby discovered a list of drugs with improper dosages. CONCLUSIONS: In summary, this study represents the first comprehensive determination of both ADR severity grades and ADR frequencies. This endeavor establishes a strong foundation for future artificial intelligence applications in discovering new drugs with high efficacy and low toxicity. It also heralds a paradigm shift in clinical toxicity research, moving from qualitative description to quantitative evaluation.


Subject(s)
Big Data , Data Mining , Drug-Related Side Effects and Adverse Reactions , Humans , Data Mining/methods , Pharmacovigilance , Models, Theoretical , Adverse Drug Reaction Reporting Systems/statistics & numerical data
2.
Front Oncol ; 12: 898117, 2022.
Article in English | MEDLINE | ID: mdl-35795065

ABSTRACT

Metastasis is the main fatal cause of colorectal cancer (CRC). Although enormous efforts have been made to date to identify biomarkers associated with metastasis, there is still a huge gap to translate these efforts into effective clinical applications due to the poor consistency of biomarkers in dealing with the genetic heterogeneity of CRCs. In this study, a small cohort of eight CRC patients was recruited, from whom we collected cancer, paracancer, and normal tissues simultaneously and performed whole-exome sequencing. Given the exomes, a novel statistical parameter LIP was introduced to quantitatively measure the local invasion power for every somatic and germline mutation, whereby we affirmed that the innate germline mutations instead of somatic mutations might serve as the major driving force in promoting local invasion. Furthermore, via bioinformatic analyses of big data derived from the public zone, we identified ten potential driver variants that likely urged the local invasion of tumor cells into nearby tissue. Of them, six corresponding genes were new to CRC metastasis. In addition, a metastasis resister variant was also identified. Based on these eleven variants, we constructed a logistic regression model for rapid risk assessment of early metastasis, which was also deployed as an online server, AmetaRisk (http://www.bio-add.org/AmetaRisk). In summary, we made a valuable attempt in this study to exome-wide explore the genetic driving force to local invasion, which provides new insights into the mechanistic understanding of metastasis. Furthermore, the risk assessment model can assist in prioritizing therapeutic regimens in clinics and discovering new drug targets, and thus substantially increase the survival rate of CRC patients.

3.
BMC Med Genomics ; 14(1): 109, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33874942

ABSTRACT

BACKGROUND: Drug-induced glaucoma (DIG) is a kind of serious adverse drug reaction that can cause irreversible blindness. Up-to-date, the molecular mechanism of DIG largely remains unclear yet due to the medical complexity of glaucoma onset. METHODS: In this study, we conducted data mining of tremendous historical adverse drug events and genome-wide drug-regulated gene signatures to identify glaucoma-associated drugs. Upon these drugs, we carried out serial network analyses, including the weighted gene co-expression network analysis (WGCNA), to illustrate the gene interaction network underlying DIG. Furthermore, we applied pathogenic risk assessment to discover potential biomarker genes for DIG. RESULTS: As the results, we discovered 13 highly glaucoma-associated drugs, a glaucoma-related gene network, and 55 glaucoma-susceptible genes. These genes likely played central roles in triggering DIGs via an integrative mechanism of phototransduction dysfunction, intracellular calcium homeostasis disruption, and retinal ganglion cell death. Further pathogenic risk analysis manifested that a panel of nine genes, particularly OTOF gene, could serve as potential biomarkers for early-onset DIG prognosis. CONCLUSIONS: This study elucidates the possible molecular basis underlying DIGs systematically for the first time. It also provides prognosis clues for early-onset glaucoma and thus assists in designing better therapeutic regimens.


Subject(s)
Glaucoma, Open-Angle
4.
Clin Pharmacol Ther ; 107(6): 1373-1382, 2020 06.
Article in English | MEDLINE | ID: mdl-31868917

ABSTRACT

Drug safety is a severe clinical pharmacology and toxicology problem that has caused immense medical and social burdens every year. Regretfully, a reproducible method to assess drug safety systematically and quantitatively is still missing. In this study, we developed an advanced machine learning model for de novo drug safety assessment by solving the multilayer drug-gene-adverse drug reaction (ADR) interaction network. For the first time, the drug safety was assessed in a broad landscape of 1,156 distinct ADRs. We also designed a parameter ToxicityScore to quantify the overall drug safety. Moreover, we determined association strength for every 3,807,631 gene-ADR interactions, which clues mechanistic exploration of ADRs. For convenience, we deployed the model as a web service ADRAlert-gene at http://www.bio-add.org/ADRAlert/. In summary, this study offers insights into prioritizing safe drug therapy. It helps reduce the attrition rate of new drug discovery by providing a reliable ADR profile in the early preclinical stage.


Subject(s)
Adverse Drug Reaction Reporting Systems , Drug-Related Side Effects and Adverse Reactions/epidemiology , Machine Learning , Animals , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Drug-Related Side Effects and Adverse Reactions/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...