Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(17): 6628-6633, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626114

ABSTRACT

Portable nucleic acid testing (NAT) holds great promise for point-of-care disease diagnosis and field-based applications but remains difficult to achieve. Herein, we describe a portable NAT that streamlines loop-mediated isothermal amplification with photosensitization-based color development in a fully sealed 3D-printed multipiece chip. Using a smartphone accessory and an APP, we also introduce a calibration-free quantification approach via digital color sensing and library matching. With these innovative approaches, our detection platform is highly accessible, allowing for rapid and sensitive NAT without requiring sophisticated instruments and well-trained personnel. The field applicability of our NAT platform was demonstrated by detecting tuberculosis infections in clinical sputum samples and food adulteration in commercial salmon meat products.


Subject(s)
Nucleic Acid Amplification Techniques , Printing, Three-Dimensional , Humans , Smartphone , Animals , Color , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Colorimetry , Salmon , Sputum/microbiology , Food Contamination/analysis
2.
Cancer Imaging ; 24(1): 14, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38246984

ABSTRACT

BACKGROUND: Classifying and characterizing pulmonary lesions are critical for clinical decision-making process to identify optimal therapeutic strategies. The purpose of this study was to develop and validate a radiomics nomogram for distinguishing between benign and malignant pulmonary lesions based on robust features derived from diffusion images. MATERIAL AND METHODS: The study was conducted in two phases. In the first phase, we prospectively collected 30 patients with pulmonary nodule/mass who underwent twice EPI-DWI scans. The robustness of features between the two scans was evaluated using the concordance correlation coefficient (CCC) and dynamic range (DR). In the second phase, 139 patients who underwent pulmonary DWI were randomly divided into training and test sets in a 7:3 ratio. Maximum relevance minimum redundancy, least absolute shrinkage and selection operator, and logistic regression were used for feature selection and construction of radiomics signatures. Nomograms were established incorporating clinical features, radiomics signatures, and ADC(0, 800). The diagnostic efficiency of different models was evaluated using the area under the curve (AUC) and decision curve analysis. RESULTS: Among the features extracted from DWI and ADC images, 42.7% and 37.4% were stable (both CCC and DR ≥ 0.85). The AUCs for distinguishing pulmonary lesions in the test set for clinical model, ADC, ADC radiomics signatures, and DWI radiomics signatures were 0.694, 0.802, 0.885, and 0.767, respectively. The nomogram exhibited the best differentiation performance (AUC = 0.923). The decision curve showed that the nomogram consistently outperformed ADC value and clinical model in lesion differentiation. CONCLUSION: Our study demonstrates the robustness of radiomics features derived from lung DWI. The ADC radiomics nomogram shows superior clinical net benefits compared to conventional clinical models or ADC values alone in distinguishing solitary pulmonary lesions, offering a promising tool for noninvasive, precision diagnosis in lung cancer.


Subject(s)
Lung Neoplasms , Radiomics , Humans , Lung Neoplasms/diagnostic imaging , Area Under Curve , Nomograms , Lung
3.
Angle Orthod ; 91(4): 515-521, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33570605

ABSTRACT

OBJECTIVES: To determine whether the incorporation of N-acetylcysteine (NAC) improves the antibacterial ability and biocompatibility of nano silver (NAg)-containing orthodontic cement. MATERIALS AND METHODS: NAg was synthesized using a sodium citrate reduction method. NAg particles were characterized using transmission electron microscopy and ultraviolet-visible absorption spectra. NAg and NAC were incorporated into a resin-modified glass ionomer cement. Enamel shear bond strength (SBS), antibacterial capability, and cytotoxicity were evaluated. RESULTS: Incorporating 0.15% NAg and 20% NAC had no adverse effect on the SBS of orthodontic cement (P > .1). Adding NAC into NAg-containing cement greatly reduced the biofilm metabolic activity and lactic acid production (P < .05) and lowered the colony unit-forming counts by approximately 1 log (P < .05). The cell viability against NAg-containing cement was improved by NAC (P < .05). CONCLUSIONS: The incorporation of NAC into NAg-containing cement achieved stronger antibacterial capability and better biocompatibility, without compromising the enamel SBS. The combined use of NAC and NAg is promising to combat caries in orthodontic practice.


Subject(s)
Dental Bonding , Orthodontic Brackets , Acetylcysteine/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms , Dental Cements , Glass Ionomer Cements/pharmacology , Materials Testing , Resin Cements , Shear Strength
4.
ACS Chem Neurosci ; 11(2): 133-145, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31815422

ABSTRACT

Metabotropic glutamate receptors of class C GPCRs exist as constitutive dimers, which play important roles in activating excitatory synapses of the central nervous system. However, the activation mechanism induced by agonists has not been clarified in experiments. To address the problem, we used microsecond all-atom molecular dynamics (MD) simulation couple with protein structure network (PSN) to explore the glutamate-induced activation for the mGluR1 homodimer. The results indicate that glutamate binding stabilizes not only the closure of Venus flytrap domains but also the polar interaction of LB2-LB2, in turn keeping the extracelluar domain in the active state. The activation of the extracelluar domain drives transmembrane domains (TMDs) of the two protomers closer and induces asymmetric activation for the TMD domains of the two protomers. One protomer with lower binding affinity to the agonist is activated, while the other protomer with higher binding energy is still in the inactive state. The PSN analysis identifies the allosteric regulation pathway from the ligand-binding pocket in the extracellular domain to the G-protein binding site in the intracellular TMD region and further reveals that the asymmetric activation is attributed to a combination of trans-pathway and cis-pathway regulations from two glumatates, rather than a single activation pathway. These observations could provide valuable molecular information for understanding of the structure and the implications in drug efficacy for the class C GPCR dimers.


Subject(s)
Molecular Dynamics Simulation , Receptors, Metabotropic Glutamate/chemistry , Allosteric Regulation/physiology , Animals , Humans , Protein Binding/physiology , Protein Conformation , Protein Multimerization/physiology
5.
RSC Adv ; 9(5): 2371-2378, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-35520478

ABSTRACT

Stimulus-responsive, controlled-release systems are of great importance in medical science and have drawn significant research attention, leading to the development of many stimulus-responsive materials over the past few decades. However, these materials are mainly designed to respond to external stimuli and ignore the key problem of the amount of drug loading. In this study, exploiting the synergistic effect of boronic esters and N-isopropylacrylamide (NIPAM) pendant, we present a copolymer as an ROS and esterase dual-stimulus responsive drug delivery system that has a drug loading of up to 6.99 wt% and an entrapment efficiency of 76.9%. This copolymer can successfully self-assemble into polymer micelles in water with a narrow distribution. Additionally, the measured CMC hinted at the good stability of the polymeric micelles in water solution, ensuing long circulation time in the body. This strategy for increasing the drug loading on the basis of stimulus response opens up a new avenue for the development of drug delivery systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...