Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Innate Immun ; 24(8): 501-512, 2018 11.
Article in English | MEDLINE | ID: mdl-30409089

ABSTRACT

Macrophage migration is an essential step in host defense against infection and wound healing. Elevation of cAMP by inhibiting phosphodiesterase 4 (PDE4), enzymes that specifically degrade cAMP, is known to suppress various inflammatory responses in activated macrophages, but the role of PDE4 in macrophage migration is poorly understood. Here we show that the migration of Raw 264.7 macrophages stimulated with LPS was markedly and dose-dependently induced by the PDE4 inhibitor rolipram as assessed by scratch wound healing assay. Additionally, this response required the involvement of serum in the culture medium as serum starvation abrogated the effect. Further analysis revealed that rolipram and serum exhibited synergistic effect on the migration, and the influence of serum was independent of PDE4 mRNA expression in LPS-stimulated macrophages. Moreover, the enhanced migration by rolipram was mediated by activating cAMP/exchange proteins directly activated by cAMP (Epac) signaling, presumably via interaction with LPS/TLR4 signaling with the participation of unknown serum components. These results suggest that PDE4 inhibitors, together with serum components, may serve as positive regulators of macrophage recruitment for more efficient pathogen clearance and wound repair.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Inflammation/drug therapy , Macrophages/physiology , Phosphodiesterase 4 Inhibitors/pharmacology , Rolipram/pharmacology , Serum/metabolism , Animals , Cell Movement , Cyclic AMP/metabolism , Inflammation/immunology , Lipopolysaccharides/immunology , Mice , RAW 264.7 Cells , Signal Transduction , Wound Healing
2.
Chang Gung Med J ; 35(3): 197-210, 2012.
Article in English | MEDLINE | ID: mdl-22735051

ABSTRACT

Type 4 cyclic nucleotide phosphodiesterases (PDE4) are a family of low km 3',5'-cyclic adenosine monophosphate (cAMP)-specific phosphodiesterases including at least 20 isozymes encoded by four genes (PDE4A, PDE4B, PDE4C, and PDE4D) in mammals. Each PDE4 gene plays a special, nonredundant role in the control of cell function even though the four subfamilies share the highly conserved catalytic domain and upstream conserved region (UCR) 1 and UCR2 motifs of the regulatory domain. By their wide tissue distribution as well as differential expression and regulation among various cell types, PDE4s are viewed as critical regulators of intracellular cAMP levels, cAMP signaling, and signal compartmentalization. By increasing cAMP levels, PDE4 inhibitors show a broad spectrum of anti-inflammatory effects in almost all inflammatory cells. Many PDE4 inhibitors have been evaluated in clinical trials for various inflammatory conditions. Developed inhibitors, including the recently approved and marketed roflumilast, have considerable efficacy, but they also have adverse effects such as nausea and emesis which limit their dosing and subsequently their immunomodulatory activity. Thus, the development of PDE4 inhibitors with improved therapeutic indexes has been a major focus of pharmaceutical research for the treatment of chronic inflammatory diseases. Recent PDE4 gene knockout studies strongly suggest that PDE4 inhibitors with PDE4B selectivity may retain the anti-inflammatory effects while limiting side effects. Development of PDE4 inhibitors with different delivery routes, such as topical application and inhalation, is also a promising approach for the treatment of pulmonary inflammatory conditions and dermatitis. This review includes a brief overview of the domain structure and function of PDE4 isozymes, the role of PDE4s in inflammatory cell responses, and the potential therapeutic utility of PDE4 inhibitors in inflammatory diseases.


Subject(s)
Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Inflammation/drug therapy , Leukocytes/drug effects , Phosphodiesterase Inhibitors/pharmacology , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Humans , Phosphodiesterase Inhibitors/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...