Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Biomaterials ; 309: 122613, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759485

ABSTRACT

Vascular restenosis following angioplasty continues to pose a significant challenge. The heterocyclic trioxirane compound [1, 3, 5-tris((oxiran-2-yl)methyl)-1, 3, 5-triazinane-2, 4, 6-trione (TGIC)], known for its anticancer activity, was utilized as the parent ring to conjugate with a non-steroidal anti-inflammatory drug, resulting in the creation of the spliced conjugated compound BY1. We found that BY1 induced ferroptosis in VSMCs as well as in neointima hyperplasia. Furthermore, ferroptosis inducers amplified BY1-induced cell death, while inhibitors mitigated it, indicating the contribution of ferroptosis to BY1-induced cell death. Additionally, we established that ferritin heavy chain1 (FTH1) played a pivotal role in BY1-induced ferroptosis, as evidenced by the fact that FTH1 overexpression abrogated BY1-induced ferroptosis, while FTH1 knockdown exacerbated it. Further study found that BY1 induced ferroptosis by enhancing the NCOA4-FTH1 interaction and increasing the amount of intracellular ferrous. We compared the effectiveness of various administration routes for BY1, including BY1-coated balloons, hydrogel-based BY1 delivery, and nanoparticles targeting OPN loaded with BY1 (TOP@MPDA@BY1) for targeting proliferated VSMCs, for prevention and treatment of the restenosis. Our results indicated that TOP@MPDA@BY1 was the most effective among the three administration routes, positioning BY1 as a highly promising candidate for the development of drug-eluting stents or treatments for restenosis.


Subject(s)
Ferroptosis , Muscle, Smooth, Vascular , Nanoparticles , Ferroptosis/drug effects , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Humans , Nanoparticles/chemistry , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Male , Mice , Mice, Inbred C57BL , Oxidoreductases/metabolism , Ferritins
2.
J Colloid Interface Sci ; 669: 383-392, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718591

ABSTRACT

Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO2-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO2-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO2-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO2-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.

3.
Anal Chem ; 96(21): 8416-8423, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38755966

ABSTRACT

Nanogap-based plasmonic metal nanocrystals have been applied in surface-enhanced Raman scattering detection, while the closed and insufficient electromagnetic fields as well as the nonreproducible Raman signal of the substrate greatly restrict the actual application. Herein, a highly uniform Au/AgAu monolayer with abundant nanogaps and huge electromagnetic enhancement is prepared, which shows ultrasensitive and reproducible SERS detection. Au/AgAu with an inner nanogap is first prepared based on Au nanotriangles, and the nanogap is opened from the three tips via a subsequent etching process. The open-gap Au/AgAu displays much higher SERS efficiency than Au and Au/AgAu with an inner nanogap on detecting crystal violet due to the open-gap induced electromagnetic enhancement and improved molecular absorption. Furthermore, the open-gap Au/AgAu monolayer is prepared via interfacial self-assembly, which shows further improved SERS due to the dense and strong hotspots in the nanocavities induced by the electromagnetic coupling between adjacent open gaps. The monolayer possesses excellent signal stability, uniformity, and reproducibility. The analytic enhancement factor and relative standard deviation reach to 2.12 × 108 and 4.65% on detecting crystal violet, respectively. Moreover, the monolayer achieves efficient detection of thiram in apple juice, biphenyl-4-thiol, 4-mercaptobenzoic, melamine, and a mixed solution of four different molecules, showing great promise in practical detection.

4.
J Asian Nat Prod Res ; : 1-8, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607260

ABSTRACT

Phytochemical investigation on the fruiting bodies of the medicinal fungus Ganoderma lingzhi led to the isolation of a new norsteroid, namely ganonorsterone A (1), together with one known steroid, cyathisterol (2). The structure and absolute configuration of compound 1 were assigned by extensive analysis of MS, NMR data, and quantum-chemical calculations including electronic circular dichroism (ECD) and calculated 13C NMR-DP4+ analysis. Bioassay results showed that compound 1 displayed moderate inhibition on NO production in RAW 264.7 macrophages.

5.
Molecules ; 29(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542919

ABSTRACT

To improve the mess-specific activity of Co supported on zeolite catalysts in Fischer-Tropsch (FT) synthesis, the Co-MCM-22 catalyst was prepared by simply grinding the MCM-22 with nanosized Co3O4 prefabricated by the thermal decomposition of the Co(II)-glycine complex. It is found that this novel strategy is effective for improving the mess-specific activity of Co catalysts in FT synthesis compared to the impregnation method. Moreover, the ion exchange and calcination sequence of MCM-22 has a significant influence on the dispersion, particle size distribution, and reduction degree of Co. The Co-MCM-22 prepared by the physical grinding of prefabricated Co3O4 and H+-type MCM-22 without a further calcination process exhibits a moderate interaction between Co3O4 and MCM-22, which results in the higher reduction degree, higher dispersion, and higher mess-specific activity of Co. Thus, the newly developed method is more controllable and promising for the synthesis of metal-supported catalysts.

6.
Nanoscale ; 16(12): 5960-5975, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38446099

ABSTRACT

As the most common nonlinear optical process, second harmonic generation (SHG) has important application value in the field of nanophotonics. With the rapid development of metal nanomaterial processing and chemical preparation technology, various structures based on metal nanoparticles have been used to achieve the enhancement and modulation of SHG. In the field of nonlinear optics, plasmonic metal nanostructures have become potential candidates for nonlinear optoelectronic devices because of their highly adjustable physical characteristics. In this article, first, the basic optical principles of SHG and the source of surface symmetry breaking in metal nanoparticles are briefly introduced. Next, the related reports on SHG in metal nanostructures are reviewed from three aspects: the enhancement of SHG efficiency by double resonance structures, the SHG effect based on magnetic resonance and the harmonic energy transfer. Then, the applications of SHG in the sensing, imaging and in situ monitoring of metal nanostructures are summarized. Future opportunities for SHG in composite systems composed of metal nanostructures and two-dimensional materials are also proposed.

7.
Biomed Pharmacother ; 173: 116323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401523

ABSTRACT

Deubiquitination, a post-translational modification regulated by deubiquitinases, is essential for cancer initiation and progression. Ubiquitin-specific proteases (USPs) are essential elements of the deubiquitinase family, and are overexpressed in gastric cancer (GC). Through the regulation of several signaling pathways, such as Wnt/ß-Catenin and nuclear factor-κB signaling, and the promotion of the expression of deubiquitination- and stabilization-associated proteins, USPs promote the proliferation, metastasis, invasion, and epithelial-mesenchymal transition of GC. In addition, the expression of USPs is closely related to clinicopathological features, patient prognosis, and chemotherapy resistance. USPs therefore could be used as prognostic biomarkers. USP targeting small molecule inhibitors have demonstrated strong anticancer activity. However, they have not yet been tested in the clinic. This article provides an overview of the latest fundamental research on USPs in GC, aiming to enhance the understanding of how USPs contribute to GC progression, and identifying possible targets for GC treatment to improve patient survival.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Ubiquitin-Specific Proteases/metabolism , Signal Transduction , Wnt Signaling Pathway , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Cell Proliferation
8.
Nanotechnology ; 35(22)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38387089

ABSTRACT

Low-cost, small-sized, and easy integrated high-performance photodetectors for photonics are still the bottleneck of photonic integrated circuits applications and have attracted increasing attention. The tunable narrow bandgap of two-dimensional (2D) layered molybdenum ditelluride (MoTe2) from ∼0.83 to ∼1.1 eV makes it one of the ideal candidates for near-infrared (NIR) photodetectors. Herein, we demonstrate an excellent waveguide-integrated NIR photodetector by transferring mechanically exfoliated 2D MoTe2onto a silicon nitride (Si3N4) waveguide. The photoconductive photodetector exhibits excellent responsivity (R), detectivity (D*), and external quantum efficiency at 1550 nm and 50 mV, which are 41.9 A W-1, 16.2 × 1010Jones, and 3360%, respectively. These optoelectronic performances are 10.2 times higher than those of the free-space device, revealing that the photoresponse of photodetectors can be enhanced due to the presence of waveguide. Moreover, the photodetector also exhibits competitive performances over a broad wavelength range from 800 to 1000 nm with a highRof 15.4 A W-1and a largeD* of 59.6 × 109Jones. Overall, these results provide an alternative and prospective strategy for high-performance on-chip broadband NIR photodetectors.

9.
Nanotechnology ; 35(19)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38316045

ABSTRACT

Molybdenum sulfide (MoS2) as an emerging optoelectronic material, shows great potential for phototransistors owing to its atomic thickness, adjustable band gap, and low cost. However, the phototransistors based on MoS2have been shown to have some issues such as large gate leakage current, and interfacial scattering, resulting in suboptimal optoelectronic performance. Thus, Al-doped hafnium oxide (Hf1-xAlx) is proposed to be a dielectric layer of the MoS2-based phototransistor to solve this problem because of the relatively higher crystallization temperature and dielectric constant. Here, a high-performance MoS2phototransistor with Hf1-xAlxO gate dielectric layer grown by plasma-enhanced atomic layer deposition has been fabricated and studied. The results show that the phototransistor exhibits a high responsivity of 2.2 × 104A W-1, a large detectivity of 1.7 × 1017Jones, a great photo-to-dark current ratio of 2.2 × 106%, and a high external quantum efficiency of 4.4 × 106%. The energy band alignment and operating mechanism were further used to clarify the reason for the enhanced MoS2phototransistor. The suggested MoS2phototransistors could provide promising strategies in further optoelectronic applications.

10.
Nanotechnology ; 35(15)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38176077

ABSTRACT

Aluminum-doped Ga2O3(AGO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD). The growth mechanism, surface morphology, chemical composition, and optical properties of AGO films were systematically investigated. The bandgap of AGO films can be theoretically set between 4.65 and 6.8 eV. Based on typical AGO films, metal-semiconductor-metal photodetectors (PDs) were created, and their photoelectric response was examined. The preliminary results show that PE-ALD grown AGO films have high quality and tunable bandgap, and AGO PDs possess superior characterizations to undoped films. The AGO realized using PE-ALD is expected to be an important route for the development of a new generation of gallium oxide-based photodetectors into the deep-ultraviolet.

11.
Sci Rep ; 13(1): 22052, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086918

ABSTRACT

To validate a radiomics model based on multi-sequence magnetic resonance imaging (MRI) in predicting the ki-67 expression levels in early-stage endometrial cancer, 131 patients with early endometrial cancer who had undergone pathological examination and preoperative MRI scan were retrospectively enrolled and divided into two groups based on the ki-67 expression levels. The radiomics features were extracted from the T2 weighted imaging (T2WI), dynamic contrast enhanced T1 weighted imaging (DCE-T1WI), and apparent diffusion coefficient (ADC) map and screened using the Pearson correlation coefficients (PCC). A multi-layer perceptual machine and fivefold cross-validation were used to construct the radiomics model. The receiver operating characteristic (ROC) curves analysis, calibration curves, and decision curve analysis (DCA) were used to assess the models. The combined multi-sequence radiomics model of T2WI, DCE-T1WI, and ADC map showed better discriminatory powers than those using only one sequence. The combined radiomics models with multi-sequence fusions achieved the highest area under the ROC curve (AUC). The AUC value of the validation set was 0.852, with an accuracy of 0.827, sensitivity of 0.844, specificity of 0.773, and precision of 0.799. In conclusion, the combined multi-sequence MRI based radiomics model enables preoperative noninvasive prediction of the ki-67 expression levels in early endometrial cancer. This provides an objective imaging basis for clinical diagnosis and treatment.


Subject(s)
Endometrial Neoplasms , Humans , Female , Ki-67 Antigen , Retrospective Studies , Magnetic Resonance Imaging , Endometrial Neoplasms/diagnostic imaging , Endometrial Neoplasms/surgery
12.
Curr Med Imaging ; 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37876269

ABSTRACT

PURPOSE: To investigate the value of multimodal diffusion weighted imaging (DWI) in preoperative evaluation of Ki-67 expression of endometrial carcinoma (EC). MATERIALS AND METHODS: Patients who had undergone pelvic DWI, intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) sequence MRI scan before surgery were retrospectively enrolled. Single index model, double index model, and DKI were used for post-processing of the DWI data, and the apparent diffusion coefficient (ADC), real diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f), non-Gaussian mean diffusion kurtosis (MK), mean diffusion coefficient (MD) and anisotropy fraction (FA) were calculated and compared between the Ki-67 high (≥50%) and low (<50%) expression groups. RESULTS: Forty-two patients with a median age of 56 (range 37 - 75) years were enrolled, including 15 patients with a high Ki-67 (≥50%) expression and 27 with a low Ki-67 (<50%) expression. The MK (0.91 ± 0.12 vs. 0.76 ± 0.12) was significantly (P<0.05) higher while MD (0.99 ± 0.17 vs. 1.16 ± 0.22), D (0.55 ± 0.06 vs. 0.62 ± 0.08), and f (0.21 vs. 0.28) were significantly (P<0.05) lower in the high than in the low expression group. The combined model of MK, MD, D, and f-values had the largest area under the curve (AUC) value of 0.869 (95% CI: 0.764-0.974), sensitivity 0.733 and specificity 0.852, followed by the MK value with an AUC value 0.827 (95% CI: 0.700-0.954), sensitivity 0.733 and specificity 0.815. CONCLUSIONS: IVIM and DKI have certain diagnostic values for preoperative evaluation of the EC Ki-67 expression, and the combined model has the highest diagnostic efficiency.

13.
Orphanet J Rare Dis ; 18(1): 306, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770946

ABSTRACT

BACKGROUND: cblC defect is the most common type of methylmalonic acidemia in China. Patients with late-onset form (>1 year) are often misdiagnosed due to heterogeneous symptoms. This study aimed to describe clinical characteristics and evaluate long-term outcomes of Chinese patients with late-onset cblC defect. METHODS: A total of 85 patients with late-onset cblC defect were enrolled. Clinical data, including manifestations, metabolites, molecular diagnosis, treatment and outcome, were summarized and analyzed. RESULTS: The age of onset ranged from 2 to 32.8 years old (median age 8.6 years, mean age 9.4 years). The time between first symptoms and diagnosis ranged from a few days to 20 years (median time 2 months, mean time 20.7 months). Neuropsychiatric symptoms were presented as first symptoms in 68.2% of cases, which were observed frequently in schoolchildren or adolescents. Renal involvement and cardiovascular disease were observed in 20% and 8.2% of cases, respectively, which occurred with the highest prevalence in preschool children. Besides the initial symptoms, the disease progressed in most patients and cognitive decline became the most frequent symptom overall. The levels of propionylcarnitine, propionylcarnitine / acetylcarnitine ratio, methylmalonic acid, methylcitric acid and homocysteine, were decreased remarkably after treatment (P<0.001). Twenty-four different mutations of MMACHC were identified in 78 patients, two of which were novel. The c.482G>A variant was the most frequent mutated allele in this cohort (25%). Except for 16 patients who recovered completely, the remaining patients were still left with varying degrees of sequelae in a long-term follow-up. The available data from 76 cases were analyzed by univariate analysis and multivariate logistic regression analysis, and the results showed that the time from onset to diagnosis (OR = 1.025, P = 0. 024) was independent risk factors for poor outcomes. CONCLUSIONS: The diagnosis of late-onset cblC defect is often delayed due to poor awareness of its various and nonspecific symptoms, thus having an adverse effect on the prognosis. It should be considered in patients with unexplained neuropsychiatric and other conditions such as renal involvement, cardiovascular diseases or even multiple organ damage. The c.482G>A variant shows the highest frequency in these patients. Prompt treatment appears to be beneficial.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Homocystinuria , Adolescent , Child, Preschool , Humans , Child , Young Adult , Adult , Homocystinuria/diagnosis , Oxidoreductases/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Carnitine , Mutation/genetics , Methylmalonic Acid , Vitamin B 12
14.
Nanoscale ; 15(36): 14886-14895, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37650354

ABSTRACT

Plasmonic hybrids are regarded as promising candidates for water purification due to their structure-dependent photocatalysis and photothermal performance. It remains a challenge to develop materials that possess these two characteristics for efficient water purification. Herein, plasmonic Ti3C2Tx/Bi2S3 two-dimensional (2D)/2D hybrids were prepared for efficient solar-driven water purification via the combination of photothermal conversion and photocatalysis. Benefitting from broad light absorption, large 2D/2D interfaces, and efficient charge transfer, the binary hybrids showed high-efficiency photothermal conversion and photothermal-assisted photocatalytic activity. By depositing these 2D/2D hybrids on a hydrophilic and porous cotton piece, the Ti3C2Tx/Bi2S3 membrane displayed a high water evaporation rate and solar-to-vapor efficiency under one-sun irradiation. The solar-driven evaporation of seawater, heavy metal ion solution, and dye solution jointly indicated that the plasmonic membrane shows great potential for drinkable water generation and industrial wastewater treatment. Most importantly, the synergistic effect of photothermal evaporation and photocatalysis of the Ti3C2Tx/Bi2S3 membrane on water purification was demonstrated. The polluted water can not only be treated by evaporation, but also be degraded via photocatalysis under solar light irradiation. This work provides new insight into designing functional materials for water purification based on the combination of photothermal conversion and photocatalysis.

15.
Cell Death Discov ; 9(1): 241, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443100

ABSTRACT

N6-methyladenosine (m6A) RNA methylation is the most prevalent internal modification of mammalian messenger RNA. The m6A modification affects multiple aspects of RNA metabolism, including processing, splicing, export, stability, and translation through the reversible regulation of methyltransferases (Writers), demethylases (Erasers), and recognition binding proteins (Readers). Accumulating evidence indicates that altered m6A levels are associated with a variety of human cancers. Recently, dysregulation of m6A methylation was shown to be involved in the occurrence and development of gastric cancer (GC) through various pathways. Thus, elucidating the relationship between m6A and the pathogenesis of GC has important clinical implications for the diagnosis, treatment, and prognosis of GC patients. In this review, we evaluate the potential role and clinical significance of m6A-related proteins which function in GC in an m6A-dependent manner. We discuss current issues regarding m6A-targeted inhibition of GC, explore new methods for GC diagnosis and prognosis, consider new targets for GC treatment, and provide a reasonable outlook for the future of GC research.

16.
Phys Chem Chem Phys ; 25(22): 15209-15218, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37232126

ABSTRACT

The rational optimization of the electromagnetic field enhancement and charge transfer in a Raman substrate is vital for achieving efficient surface-enhanced Raman scattering (SERS). Herein, a ternary plasmonic substrate, whose structure-adjustable Au nanotriangle/Cu2O hybrids are combined with two-dimensional Ti3C2Tx MXene ultrathin nanosheets, is prepared and used for efficient SERS detection of molecules. By controlling the growth of Cu2O on Au nanotriangles, Au/Cu2O hybrids with three tips exposed are prepared, which show much better SERS performance than bare Au and core-shell Au@Cu2O in detecting methylene blue (MB) under excitation at 785 nm due to the optimized electromagnetic field enhancement and charge transfer. Furthermore, the Au/Cu2O hybrids are transferred to the plasmonic Ti3C2Tx nanosheet, generating a further enhanced electromagnetic field around their interfaces. As a result, the MXene/Au/Cu2O hybrids present further improved SERS activity, and their analytical enhancement factor reaches 2.4 × 109 and the detection limit is as low as 10-12 M. The enhancement mechanism can be ascribed to the improved electric field enhancement around the Au tips and the interface between MXene and Au/Cu2O. Meanwhile, the multiple charge-transfer processes between Au, Cu2O, MXene, and MB also play an important role in improving the SERS signal.

17.
J Healthc Eng ; 2023: 7382316, 2023.
Article in English | MEDLINE | ID: mdl-36726774

ABSTRACT

Cardiac auscultation is a noninvasive, convenient, and low-cost diagnostic method for heart valvular disease, and it can diagnose the abnormality of the heart valve at an early stage. However, the accuracy of auscultation relies on the professionalism of cardiologists. Doctors in remote areas may lack the experience to diagnose correctly. Therefore, it is necessary to design a system to assist with the diagnosis. This study proposed a computer-aided heart valve disease diagnosis system, including a heart sound acquisition module, a trained model for diagnosis, and software, which can diagnose four kinds of heart valve diseases. In this study, a training dataset containing five categories of heart sounds was collected, including normal, mitral stenosis, mitral regurgitation, and aortic stenosis heart sound. A convolutional neural network GoogLeNet and weighted KNN are used to train the models separately. For the model trained by the convolutional neural network, time series heart sound signals are converted into time-frequency scalograms based on continuous wavelet transform to adapt to the architecture of GoogLeNet. For the model trained by weighted KNN, features from the time domain and time-frequency domain are extracted manually. Then feature selection based on the chi-square test is performed to get a better group of features. Moreover, we designed software that lets doctors upload heart sounds, visualize the heart sound waveform, and use the model to get the diagnosis. Model assessments using accuracy, sensitivity, specificity, and F1 score indicators are done on two trained models. The results showed that the model trained by modified GoogLeNet outperformed others, with an overall accuracy of 97.5%. The average accuracy, sensitivity, specificity, and F1 score for diagnosing four kinds of heart valve diseases are 98.75%, 96.88%, 99.22%, and 97.99%, respectively. The computer-aided diagnosis system, with a heart sound acquisition module, a diagnostic model, and software, can visualize the heart sound waveform and show the reference diagnostic results. This can assist in the diagnosis of heart valve diseases, especially in remote areas, which lack skilled doctors.


Subject(s)
Heart Sounds , Heart Valve Diseases , Humans , Heart Valve Diseases/diagnosis , Heart Auscultation , Machine Learning , Computers
18.
Cancers (Basel) ; 15(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36672322

ABSTRACT

Recently, attention has been paid to some medications and gastric cancer (GC) risk. This review aimed to evaluate associations between commonly used drugs and GC risk and to grade evidence from published systematic reviews and meta-analyses. This umbrella review was registered in PROSPERO (CRD42022320276). The systematic reviews and meta-analyses of observational studies were retrieved by searching Embase, PubMed, and Web of Science. The evidence strength of commonly used drugs and GC risk was categorized into four grades: weak, suggestive, highly suggestive, and strong. Of 19 associations between commonly used drugs and GC risk and its subtypes, none was supported by convincing or highly suggestive evidence. The risk of GC related to non-steroidal anti-inflammatory drugs (NSAIDs), non-aspirin NSAIDs, and acid-suppressive drugs, as well as the risk of non-cardia GC related to NSAIDs and aspirin, was supported by suggestive evidence. The results showed that a reduced GC risk was associated with two drug types (NSAIDs and non-aspirin NSAIDs), and an increased GC risk was associated with acid-suppressing drugs at the suggestive evidence level. Moreover, NSAIDs and aspirin reduced non-cardia GC risk as supported by suggestive evidence. However, the evidence supporting statins or metformin in reducing GC risk was weak, and thus future studies are required to clarify these associations.

19.
Opt Express ; 30(24): 44055-44070, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523089

ABSTRACT

Surface plasmons usually take two forms: surface plasmon polaritons (SPP) and localized surface plasmons (LSP). Recent experiments demonstrate an interesting plasmon mode within plasmonic gaps, showing distinct characters from the two usual forms. In this investigation, by introducing a fundamental concept of SPP standing wave and an analytical model, we reveal the nature of the recently reported plasmon modes. The analytical model includes SPP propagating and SPP reflection within a metal-insulator-metal (MIM) cavity, which is rechecked and supplemented by numerical simulations. We systematically analyze SPP standing waves within various nanocavities. During the discussion, some unusual phenomena have been explained. For example, the hot spot of a nanodimer could be off-tip, depending on the order of standing wave mode; and that a nanocube on metal film can be viewed as a nanocube dimer with the same separation. And many other interesting phenomena have been discussed, such as dark mode of SPP standing wave and extraordinary optical transmission. The study gives a comprehensive understanding of SPP standing waves, and may promote the applications of cavity plasmons in ultrasensitive bio-sensings.

20.
Pediatr Investig ; 6(4): 291-298, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36582269

ABSTRACT

Newborn screening (NBS) is a public health service aimed at identifying infants with severe genetic disorders, thus providing effective treatment early enough to prevent or ameliorate the onset of symptoms. Current NBS uses biochemical analysis of dried blood spots, predominately with time-resolved fluorescence immunoassay and tandem mass spectrometry, which produces some false positives and false negatives. The application of enzymatic activity-based testing technology provides a reliable screening method for some disorders. Genetic testing is now commonly used for secondary or confirmatory testing after a positive result in some NBS programs. Recently, next-generation sequencing (NGS) has emerged as a robust tool that enables large panels of genes to be scanned together rapidly. Rapid advances in NGS emphasize the potential for genomic sequencing to improve NBS programs. However, some challenges still remain and require solution before this is applied for population screening.

SELECTION OF CITATIONS
SEARCH DETAIL
...