Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38930705

ABSTRACT

With the proliferation of smart devices, the Internet of Things (IoT) is rapidly expanding. This study proposes a miniaturized controllable metamaterial with low control voltage for achieving low-power and compact designs in IoT node devices. Operating at a target frequency of 2.4 GHz, the proposed metamaterial requires only a 3.3 V control voltage and occupies approximately one-third of the wavelength in size. Experimental validation demonstrates its excellent reflective control performance, positioning it as an ideal choice for low-power IoT systems, particularly in the context of miniaturized and low-power IoT node applications.

2.
Micromachines (Basel) ; 13(12)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36557438

ABSTRACT

In this paper, a broadband left-handed circularly polarized (LHCP) corrugated horn antenna using a dielectric circular polarizer is proposed. Circularly polarized (CP) waves are generated by inserting an improved dovetail-shaped dielectric plate into the circular waveguide. Compared with the traditional dovetail-shaped circular polarizer, the proposed improved dovetail-shaped circular polarizer has a wider impedance bandwidth and 3 dB axial ratio bandwidth. A substrate-integrated waveguide (SIW) structure is designed as a wall to eliminate the influence of fixed grooves on the circular polarizer. The simulated reflection coefficient of the dielectric plate circular polarizer is less than -20 dB in the frequency band from 17.57 to 33.25 GHz. Then, a conical corrugated horn antenna with five corrugations and a four-level metal stepped rectangular-circular waveguide converter are designed and optimized. The simulated -10 dB impedance and 3 dB axial ratio (AR) bandwidths of the circularly polarized horn antenna integrated with the polarizer are 61% (17.1-32.8 GHz) and 60.9% (17.76-33.32 GHz), respectively. The simulated peak gain is 17.34 dBic. The measured -10 dB impedance is 52.7% (17.2-27.5 GHz).

3.
Sci Rep ; 11(1): 5766, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33707629

ABSTRACT

In this paper, an anisotropic coding metasurface is proposed to achieve dual-mode vortex beam generator by independently manipulating the orthogonally linearly polarized waves. The metasurface is composed of ultrathin single-layer ground-backed Jerusalem cross structure, which can provide complete and independent control of the orthogonally linearly polarized incident waves with greatly simplified design process. As proof of concept, a metasurface is designed to generate vortex beams with different topological charges under orthogonal polarizations operating at 15 GHz. Experimental measurements performed on fabricated prototype reveal high quality, and show good agreements with theoretical designs and simulation results. Such ultrathin dual-mode vortex beam generator may find potential applications in wireless communication systems in microwave region.

4.
Sci Rep ; 7(1): 782, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28396591

ABSTRACT

A novel three-dimensional (3D) optical lens structure for electromagnetic field shaping based on spatial light transformation method is proposed at microwave frequencies. The lens is capable of transforming cylindrical wavefronts into planar ones, and generating a directive emission. Such manipulation is simulated and analysed by solving Laplace's equation, and the deformation of the medium during the transformation is theoretically described in detail. The two-dimensional (2D) design method producing quasi-isotropic parameters is further extended to a potential 3D realization with all-dielectric gradient refractive index metamaterials. Numerical full-wave simulations are performed on both 2D and 3D models to verify the functionality and broadband characteristics of the calculated lens. Far-field radiation patterns and near-field distributions demonstrate a highly radiated directive beam when the lens is applied to a conical horn antenna.

SELECTION OF CITATIONS
SEARCH DETAIL
...