Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 21(23): 7124-30, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22030028

ABSTRACT

A novel class of N-aryl-2-acylindole human glucagon receptor (hGCGR) antagonists is reported. These compounds demonstrate good pharmacokinetic profiles in multiple preclinical species. One compound from this series, indole 33, is orally active in a transgenic murine pharmacodynamic model. Furthermore, a 1mg/kg oral dose of indole 33 lowers ambient glucose levels in an ob/ob/hGCGR transgenic murine diabetes model. This compound was deemed suitable for preclinical safety studies and was found to be well tolerated in an 8-day experimental rodent tolerability study. The combination of preclinical efficacy and safety observed with compound 33 highlights the potential of this class as a treatment for type 2 diabetes.


Subject(s)
Blood Glucose/drug effects , Drug Discovery , Hypoglycemic Agents , Indoles/chemical synthesis , Indoles/pharmacology , Receptors, Glucagon/antagonists & inhibitors , Administration, Oral , Animals , Diabetes Mellitus, Type 2/drug therapy , Dogs , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Indoles/chemistry , Mice , Mice, Transgenic , Molecular Structure , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 21(23): 7131-6, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22001094

ABSTRACT

In the course of the development of an aminobenzimidazole class of human glucagon receptor (hGCGR) antagonists, a novel class of cyclic guanidine hGCGR antagonists was discovered. Rapid N-dealkylation resulted in poor pharmacokinetic profiles for the benchmark compound in this series. A strategy aimed at blocking oxidative dealkylation led to a series of compounds with improved rodent pharmacokinetic profiles. One compound was orally efficacious in a murine glucagon challenge pharmacodynamic model and also significantly lowered glucose levels in a murine diabetes model.


Subject(s)
Blood Glucose/drug effects , Drug Discovery , Guanidines/chemical synthesis , Receptors, Glucagon/antagonists & inhibitors , Administration, Oral , Animals , Cyclization , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Dogs , Guanidines/chemistry , Guanidines/pharmacology , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Rats , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 21(1): 76-81, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21147532

ABSTRACT

A novel class of 1,3,5-pyrazoles has been discovered as potent human glucagon receptor antagonists. Notably, compound 26 is orally bioavailable in several preclinical species and shows selectivity towards cardiac ion channels, other family B receptors such hGIP and hGLP1, and a large panel of enzymes and additional receptors. When dosed orally, compound 26 is efficacious in suppressing glucagon induced plasma glucose excursion in rhesus monkey and transgenic murine pharmacodynamic models at 1 and 10 mpk, respectively.


Subject(s)
Pyrazoles/chemistry , Receptors, Glucagon/antagonists & inhibitors , Administration, Oral , Animals , Blood Glucose/metabolism , Dogs , Drug Evaluation, Preclinical , Humans , Macaca mulatta , Mice , Mice, Transgenic , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Rats , Receptors, Glucagon/metabolism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 18(13): 3701-5, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18539028

ABSTRACT

The discovery and optimization of potent and selective aminobenzimidazole glucagon receptor antagonists are described. One compound possessing moderate pharmacokinetic properties in multiple preclinical species was orally efficacious at inhibiting glucagon-mediated glucose excursion in transgenic mice expressing the human glucagon receptor, and in rhesus monkeys. The compound also significantly lowered glucose levels in a murine model of diabetes.


Subject(s)
Benzimidazoles/chemistry , Receptors, Glucagon/antagonists & inhibitors , Receptors, Glucagon/chemistry , Administration, Oral , Animals , Benzimidazoles/pharmacokinetics , CHO Cells , Chemistry, Pharmaceutical/methods , Cricetinae , Cricetulus , Diabetes Mellitus, Experimental/metabolism , Glucagon/chemistry , Humans , Inhibitory Concentration 50 , Macaca mulatta , Mice , Mice, Transgenic
5.
Bioorg Med Chem Lett ; 17(3): 587-92, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17126016

ABSTRACT

A series of conformationally constrained tri-substituted ureas were synthesized, and their potential as glucagon receptor antagonists was evaluated. This effort resulted in the identification of compound 4a, which had a binding IC50 of 4.0 nM and was shown to reduce blood glucose levels at 3 mg/kg in glucagon-challenged mice containing a humanized glucagon receptor. Compound 4a was efficacious in correcting hyperglycemia induced by a high fat diet in transgenic mice at an oral dose as low as 3 mg/kg.


Subject(s)
Receptors, Glucagon/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemical synthesis , Animals , Blood Glucose/metabolism , CHO Cells , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Dietary Fats , Drug Design , Gastric Inhibitory Polypeptide/metabolism , Glucagon/antagonists & inhibitors , Half-Life , Humans , Hyperglycemia/chemically induced , Hyperglycemia/prevention & control , Indicators and Reagents , Mice , Mice, Transgenic , Molecular Conformation , Receptors, Glucagon/genetics , Urea/pharmacology
6.
Bioorg Med Chem ; 14(5): 1506-17, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16256355

ABSTRACT

The demonstration of pharmacodynamic efficacy of novel chemical entities represents a formidable challenge in the early exploration of synthetic lead classes. Here, we demonstrate a technique to validate the biological efficacy of novel antagonists of the human glucagon receptor (hGCGR) in the surgically removed perfused liver prior to the optimization of the pharmacokinetic properties of the compounds. The technique involves the direct observation by (13)C NMR of the biosynthesis of [(13)C]glycogen from [(13)C]pyruvate via the gluconeogenic pathway. The rapid breakdown of [(13)C]glycogen (glycogenolysis) following the addition of 50 pM exogenous glucagon is then monitored in real time in the perfused liver by (13)C NMR. The concentration-dependent inhibition of glucagon-mediated glycogenolysis is demonstrated for both the peptidyl glucagon receptor antagonist 1 and structurally diverse synthetic antagonists 2-7. Perfused livers were obtained from a transgenic mouse strain that exclusively expresses the functional human glucagon receptor, conferring human relevance to the activity observed with glucagon receptor antagonists. This technique does not provide adequate quantitative precision for the comparative ranking of active compounds, but does afford physiological evidence of efficacy in the early development of a chemical series of antagonists.


Subject(s)
Liver/metabolism , Receptors, Glucagon/antagonists & inhibitors , Animals , CHO Cells , Carbon Radioisotopes , Cricetinae , Humans , Liver Glycogen/biosynthesis , Magnetic Resonance Spectroscopy/methods , Male , Mice , Mice, Transgenic , Molecular Structure , Pyruvic Acid/metabolism , Receptors, Glucagon/metabolism , Time Factors
7.
Bioorg Med Chem Lett ; 15(20): 4564-9, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16102966

ABSTRACT

A novel class of spiro-ureas has been discovered as potent human glucagon receptor antagonists in both binding and functional assays. Preliminary studies have revealed that compound 15 is an orally active human glucagon receptor antagonist in a transgenic murine pharmacodynamic model at 10 and 30 mpk. Compound 15 is orally bioavailable in several preclinical species and shows selectivity toward cardiac ion channels and other family B receptors, such as hGIP1 and hGLP.


Subject(s)
Receptors, Glucagon/antagonists & inhibitors , Spiro Compounds/pharmacology , Urea/pharmacology , Administration, Oral , Animals , CHO Cells , Cricetinae , Drug Evaluation, Preclinical , Humans , Mice , Mice, Transgenic , Models, Molecular , Spiro Compounds/chemistry , Urea/chemistry
8.
Bioorg Med Chem Lett ; 15(5): 1401-5, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15713396

ABSTRACT

A novel class of antagonists of the human glucagon receptor (hGCGR) has been discovered. Systematic modification of the lead compound identified substituents that were essential for activity and those that were amenable to further optimization. This SAR exploration resulted in the synthesis of 13, which exhibited good potency as an hGCGR functional antagonist (IC50 = 34 nM) and moderate bioavailability (36% in mice).


Subject(s)
Receptors, Glucagon/antagonists & inhibitors , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship , Thiophenes/classification
9.
Diabetes ; 53(12): 3267-73, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15561959

ABSTRACT

Glucagon maintains glucose homeostasis during the fasting state by promoting hepatic gluconeogenesis and glycogenolysis. Hyperglucagonemia and/or an elevated glucagon-to-insulin ratio have been reported in diabetic patients and animals. Antagonizing the glucagon receptor is expected to result in reduced hepatic glucose overproduction, leading to overall glycemic control. Here we report the discovery and characterization of compound 1 (Cpd 1), a compound that inhibits binding of 125I-labeled glucagon to the human glucagon receptor with a half-maximal inhibitory concentration value of 181 +/- 10 nmol/l. In CHO cells overexpressing the human glucagon receptor, Cpd 1 increased the half-maximal effect for glucagon stimulation of adenylyl cyclase with a KDB of 81 +/- 11 nmol/l. In addition, Cpd 1 blocked glucagon-mediated glycogenolysis in primary human hepatocytes. In contrast, a structurally related analog (Cpd 2) was not effective in blocking glucagon-mediated biological effects. Real-time measurement of glycogen synthesis and breakdown in perfused mouse liver showed that Cpd 1 is capable of blocking glucagon-induced glycogenolysis in a dosage-dependent manner. Finally, when dosed in humanized mice, Cpd 1 blocked the rise of glucose levels observed after intraperitoneal administration of exogenous glucagon. Taken together, these data suggest that Cpd 1 is a potent glucagon receptor antagonist that has the capability to block the effects of glucagon in vivo.


Subject(s)
Glucagon/antagonists & inhibitors , Receptors, Glucagon/antagonists & inhibitors , Adenylyl Cyclases/metabolism , Animals , CHO Cells , Cricetinae , Glucagon/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Kinetics , Liver Glycogen/metabolism , Male , Mice , Mice, Transgenic
10.
Biochem J ; 367(Pt 1): 301-6, 2002 Oct 01.
Article in English | MEDLINE | ID: mdl-12036431

ABSTRACT

Insulin regulates cellular metabolism and growth through activation of insulin receptors (IRs). We recently identified a non-peptide small-molecule IR activator (compound 2), which induced human IR tyrosine kinase activity in Chinese-hamster ovary cells expressing human IR [Qureshi, Ding, Li, Szalkowski, Biazzo-Ashnault, Xie, Saperstein, Brady, Huskey, Shen et al. (2000) J. Biol. Chem. 275, 36590-36595]. Oral treatment with this compound resulted in correction of hyperglycaemia, hypertriacylglycerolaemia and hyperinsulinaemia in several rodent models of diabetes. In the present study, we have found that this compound increased tyrosine phosphorylation of the IR beta-subunit and IR substrate 1 in primary rat adipocytes as well as induced phosphorylation of Akt, the 70 kDa ribosomal protein S6 kinase and glycogen synthase-3 (deactivation) in Chinese-hamster ovary cells expressing human IR. Similar to insulin, compound 2 stimulated glucose uptake, glycogen synthesis and inhibited isoprenaline-stimulated lipolysis in adipocytes. A structurally related analogue (compound 3) was devoid of the above activities suggesting that the activity of compound 2 is specifically mediated by targeted IR activation. The effects of compound 2 on stimulation of glucose uptake, glycogen synthesis and inhibition of lipolysis were blocked by wortmannin, consistent with the involvement of a phosphoinositide 3-kinase-dependent pathway. In addition, compound 2, but not compound 3, exhibited additive or synergistic effects with sub-maximal concentrations of insulin in rat adipocytes. Thus the IR activator was capable of activating insulin-mediated signalling and metabolic pathways in primary adipocytes. These results demonstrate that IR activators have implications for the future development of new therapeutic approaches to Type I and Type II diabetes.


Subject(s)
Insulin/metabolism , Receptor, Insulin/metabolism , Signal Transduction , Adipocytes/metabolism , Androstadienes/pharmacology , Animals , Blotting, Western , CHO Cells , Cricetinae , Enzyme Inhibitors/pharmacology , Glucose/metabolism , Glycerol/metabolism , Glycogen Synthase/metabolism , Humans , Isoproterenol/pharmacology , Male , Phosphorylation , Rats , Rats, Wistar , Ribosomal Protein S6 Kinases/metabolism , Wortmannin
SELECTION OF CITATIONS
SEARCH DETAIL
...