Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.115
Filter
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931495

ABSTRACT

Video action recognition based on skeleton nodes is a highlighted issue in the computer vision field. In real application scenarios, the large number of skeleton nodes and behavior occlusion problems between individuals seriously affect recognition speed and accuracy. Therefore, we proposed a lightweight multi-stream feature cross-fusion (L-MSFCF) model to recognize abnormal behaviors such as fighting, vicious kicking, climbing over the wall, et al., which could obviously improve recognition speed based on lightweight skeleton node calculation, and improve recognition accuracy based on occluded skeleton node prediction analysis in order to effectively solve the behavior occlusion problem. The experiments show that our proposed All-MSFCF model has a video action recognition average accuracy rate of 92.7% for eight kinds of abnormal behavior recognition. Although our proposed lightweight L-MSFCF model has an 87.3% average accuracy rate, its average recognition speed is 62.7% higher than the full-skeleton recognition model, which is more suitable for solving real-time tracing problems. Moreover, our proposed Trajectory Prediction Tracking (TPT) model could real-time predict the moving positions based on the dynamically selected core skeleton node calculation, especially for the short-term prediction within 15 frames and 30 frames that have lower average loss errors.

4.
Environ Res ; 258: 119416, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885827

ABSTRACT

To address the urgent need for efficient removal of lead-containing wastewater and reduce the risk of toxicity associated with heavy-metal wastewater contamination, materials with high removal rates and easy separation must be developed. Herein, a novel organic-inorganic hybrid material based on phosphorylated magnetic chitosan (MSCP) was synthesized and applied for the selective removal of lead (II) from wastewater. From the characterization and the experimental results can be obtained that the magnetic saturation strength of MSCP reaches 14.65 emu/g, which can be separated quickly and regenerated readily, and maintains high adsorption performance even after 5 cycles, indicating that the adsorbent possesses good magnetic separation performance and durability. Also, MSCP showed high selective adsorption performance for lead in the multiple metal ions coexistence solutions at pH 6.0 and room temperature, with an adsorption coefficient SPb-MSCP of 78.85%, which was much higher than that of MSC (the SPb-MSC was 11.59%). Additionally, in the single lead system, the sorption characteristics of Pb(II) on MSCP and MCP had obvious pH-responsiveness, and their adsorption capacity increased with the increase of solution pH, reaching the maximal values of 80.19 and 72.68 mg/g, respectively. It is noteworthy that the acid resistance of MSCP with an inert layer coated on the core is significantly improved, with almost no iron leaching from MSCP over the entire acidity range, while MCP has 7.63 mg/g of iron leaching at pH 1.0. Significantly, MSCP exhibited a maximum adsorption capacity of 102.04 mg/g, which matches the Langmuir model at pH 6.0 and 298.15 K, and points to the pseudo-second-order kinetics of the chemisorption process of Pb(II) on MSCP. These findings highlight the great potential of MSCP for Pb(II) removal from aqueous solution, making it a promising solution for Pb(II) contamination in wastewater.

5.
Clin Res Hepatol Gastroenterol ; : 102403, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901567

ABSTRACT

BACKGROUND AND AIM: Long non-coding RNAs (lncRNAs) play an important role in tumor progression, including in hepatocellular carcinoma (HCC) induced by hepatitis B virus (HBV). Therefore, the aim of this study was to investigate the role of LINC02532 in HCC, mainly for diagnostic prognostic value and cellular function, as well as mechanistic aspects. METHODS: Initially, GEO and VirBase databases were used to screen for aberrant lncRNAs in HBV-HCC.Then, HBV-HCC persons followed up in our center were retrospectively studied to investigate the diagnostic, prognostic value of LINC02532 in HBV-HCC. Subsequently, the role of LINC02532 in HBV-HCC was measured using cellular function assay methods and possible mechanisms were analyzed in conjunction with bioinformatic predictive science. RESULTS: LINC02532 was a lncRNA abnormally expressed in HBV-HCC. LINC02532 was significantly up-regulated in the expression level in HBV-HCC tissues compared with normal tissues from patients. Moreover, LINC02532 could distinguish HBV-HCC and predict the prognosis of HBV-HCC. In vitro experiments showed that LINC02532 could regulate miR-455-3p and promote the malignant characterization of HBV-HCC cells. CHEK2 was a target gene of miR-455-3p. CONCLUSIONS: The prognosis and diagnosis of HBV-HCC can rely on the expression of LINC02532. LINC02532 was important for further progression of HBV-HCC, by moderating miR-455-3p/CHEK2.

6.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38903085

ABSTRACT

The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.

7.
IUCrJ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38904548

ABSTRACT

Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction.

8.
IUCrJ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38904547

ABSTRACT

The success of experimental phasing in macromolecular crystallography relies primarily on the accurate locations of heavy atoms bound to the target crystal. To improve the process of substructure determination, a modified phase-retrieval algorithm built on the framework of the relaxed alternating averaged reflection (RAAR) algorithm has been developed. Importantly, the proposed algorithm features a combination of the π-half phase perturbation for weak reflections and enforces the direct-method-based tangent formula for strong reflections in reciprocal space. The proposed algorithm is extensively demonstrated on a total of 100 single-wavelength anomalous diffraction (SAD) experimental datasets, comprising both protein and nucleic acid structures of different qualities. Compared with the standard RAAR algorithm, the modified phase-retrieval algorithm exhibits significantly improved effectiveness and accuracy in SAD substructure determination, highlighting the importance of additional constraints for algorithmic performance. Furthermore, the proposed algorithm can be performed without human intervention under most conditions owing to the self-adaptive property of the input parameters, thus making it convenient to be integrated into the structural determination pipeline. In conjunction with the IPCAS software suite, we demonstrated experimentally that automatic de novo structure determination is possible on the basis of our proposed algorithm.

9.
Water Res ; 260: 121911, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38875859

ABSTRACT

At present, nitrogen (N) leaching from bioretention systems (BRSs) has become a key issue, imposing constraints on their application, a consequence of N dynamics of both inflow and legacy N at different time scales. In this study, the distinct sources (IL: immediate leaching, FL: fast leaching, SL: slow leaching) and the principal transformation processes of different N species (i.e., NH4+, NO3- and DON) leaching originating from inflow and legacy of BRSs were firstly unveiled by various 15N species labeling (i.e., 15N-NH4+, 15N-NO3- and 15N-DON). Results indicate that: NH4+ leaching was primarily caused by FL from influent organic N and SL from influent NH4+, with mineralization being the main transformation process influencing NH4+ leaching; NO3- leaching primarily originated from SL, with the major proportion attributed to the influent organic N in SL, autotrophic and heterotrophic nitrification were the main influencing factors; DON leaching primarily originated from SL, with similar proportions coming from influent organic N, NH4+, and NO3-, inorganic N assimilation was the principal transformation process affecting DON leaching. This study provides an effective framework for apportioning the leaching sources of different N species, providing valuable insights for the implementation of both inflow and legacy N leaching control measures.

10.
Can J Infect Dis Med Microbiol ; 2024: 4749097, 2024.
Article in English | MEDLINE | ID: mdl-38826677

ABSTRACT

Background: Blood safety levels have been significantly improved since the implementation of nucleic acid amplification technology (NAT) testing for blood donors. However, there remains a residual risk of transfusion transmission infections. This study aimed to evaluate the prevalence of HIV and its residual risk transmission among volunteer blood donors of Zhejiang Province, China, for five years after NAT implementation. Materials and Methods: All specimens and information were collected from voluntary unpaid donors at all blood services in Zhejiang Province, China, from January 2018 to December 2022. The HIV antibody or antigen and HIV RNA were detected using enzyme-linked immunosorbent assay and NAT, respectively. The HIV residual risk transmission was calculated using the incidence or window period model. Results: A total of 3,375,678 voluntary blood donors were detected, revealing an HIV prevalence of 9.92/100000. The HIV prevalence of blood donors in 12 blood services in Zhejiang Province was 6.11, 6.98, 7.45, 8.21, 8.36, 8.94, 9.04, 9.66, 9.73, 10.22, 11.80, and 12.47 per 100000 donors, without statistically significant difference observed among the services (p > 0.05). The HIV prevalence of males (15.49/100000) was significantly higher compared to females (1.95/100000; p < 0.05). There was an insignificant difference in HIV prevalence among blood donors of all different age groups (p > 0.05), but the HIV prevalence in the 26-35 age group and 18-25 age group was significantly higher compared to the 36-45 age group (p < 0.05). The difference in HIV prevalence between first-time blood donors (13.65/100,000) and repeat blood donors (6.78/100,000) was statistically significant (p < 0.05). From 2018 to 2022, the HIV residual risk in blood transfusion transmission was 0.266/100000. Conclusion: The prevalence of HIV among blood donors in Zhejiang Province, China, is associated with age, gender, and times of blood donation. The HIV residual risk in blood transfusion transmission remains low in the province, and increasing the rate of repeat blood donors is beneficial to improve blood safety.

11.
Sci Rep ; 14(1): 14458, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914778

ABSTRACT

Unmanned aerial vehicles (UAVs) have become the focus of current research because of their practicability in various scenarios. However, current local path planning methods often result in trajectories with numerous sharp or inflection points, which are not ideal for smooth UAV flight. This paper introduces a UAV path planning approach based on distance gradients. The key improvements include generating collision-free paths using collision information from initial trajectories and obstacles. Then, collision-free paths are subsequently optimized using distance gradient information. Additionally, a trajectory time adjustment method is proposed to ensure the feasibility and safety of the trajectory while prioritizing smoothness. The Limited-memory BFGS algorithm is employed to efficiently solve optimal local paths, with the ability to quickly restart the trajectory optimization program. The effectiveness of the proposed method is validated in the Robot Operating System simulation environment, demonstrating its ability to meet trajectory planning requirements for UAVs in complex unknown environments with high dynamics. Moreover, it surpasses traditional UAV trajectory planning methods in terms of solution speed, trajectory length, and data volume.

12.
Chin Neurosurg J ; 10(1): 18, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835088

ABSTRACT

BACKGROUND: This study aimed to investigate clinical features and treatment strategies for intracranial aneurysm (IA) associated with pituitary adenoma (PA). METHODS: We enrolled patients with lesions in the sellar region and age-matched general population who were confirmed with IA from two hospitals. Four types of treatment strategies were performed, which included Type I (both IA and PA were treated with surgery), Type II (IA was treated with surgery and PA was performed by non-surgical treatment), Type III (PA was performed with surgery and observation was available for IA) and Type IV (both IA and PA were performed with non-surgical treatment). RESULTS: The incidence of IA was 2.2% in the general population, 6.1% in patients with PA, 4.3% in patients with Rathke cleft cyst, 2.8% in patients with meningioma and none were found with IA in patients with craniopharyngioma. Age over 50 years (OR, 2.69; 95% CI, 1.20-6.04; P = 0.016), female (OR, 3.83, P = 0.003), and invasive tumor (OR, 3.26, P = 0.003) were associated with a higher incidence of IA in patients with PA. During the mean follow-up of 49.2 months, no patients experienced stroke, and recurrence of aneurysms and aneurysms treated with observation were stable. Of four patients with recurrence of PA, three patients were treated for type I and one patient for type III. CONCLUSIONS: Preoperative evaluation for aneurysm screening is necessary due to the high incidence of IA in PA patients. Our current treatment strategies may provide a benefit for these patients.

13.
Nanotechnology ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861960

ABSTRACT

Magneto-controlling micro-nano materials' motion is a promising way that enable the noncontact, remote, and nondestructive controlling of their macrostructure as well as functionalities. Here, an optical microscope with an electromagnet was constructed to in-situ monitor the magneto-controlled motion process microscopically. Taking micro-nano graphite flake (MGF) as a model system, we experimentally demonstrate the key factors which influence the magneto-controlling of materials' motion. First, the product of intensity and gradient of the magnetic field (B▽B) has been confirmed as the dominant driving force and the flipping direction of the MGFs is accordingly determined by the vector direction of B×▽B. Second, quantitatively comparative experiments further revealed that the threshold driving force has an exponential relationship with the structural aspect ratio (b/a) of MGFs. Third, the critical magneto-driving force is found as proportional to the viscosity of the solvent. In addition, we also discovered the delay effect, fatigue effects, and the multiple cycle acceleration effect in magneto-controlled flakes flipping. Accordingly, a dynamic model is developed that describes the flip of the diamagnetic flake under external magnetic field excitation considering the shape factor. It is shown experimentally that the model accurately predicts the flip dynamics of the flake under different magnetic field conditions. These findings can be used to achieve magneto-controlling materials' macrostructure as well as their functionalities.

14.
MedComm (2020) ; 5(6): e571, 2024 Jun.
Article in Catalan | MEDLINE | ID: mdl-38840772

ABSTRACT

Iron overload is common in cardiovascular disease, it is also the factor that drives ferroptosis. Noncoding RNAs play an important role in heart disease; however, their regulatory role in iron overload-mediated ferroptosis remains much unknown. In our study, the iron overload model in mice was constructed through a high-iron diet, and ammonium iron citrate  treatment was used to mimic iron overload in vitro. We found iron overload induced ferroptosis in cardiomyocytes, which was dependent on the high expression of transferrin receptor (TFRC). MiR-31-5p was downregulated during iron overload; it inhibited cardiomyocyte ferroptosis by targeting TFRC. CircPIK3C2A, a highly expressed circRNA in the heart, was upregulated when iron was overloaded. CircPIK3C2A enhanced the expression of TFRC by sponging miR-31-5p and promoted ferroptosis during iron overload. Our results reveal a novel mechanistic insight into noncoding RNA-based ferroptosis and identify the circPIK3C2A/miR-31-5p/TFRC axis as a promising therapeutic target for myocardial damage.

15.
Nat Chem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844635

ABSTRACT

Halogenated organic pollutants (HOPs) are causing a significant environmental and human health crisis due to their high levels of toxicity, persistence and bioaccumulation. Urgent action is required to develop effective approaches for the reduction and reuse of HOPs. Whereas current strategies focus primarily on the degradation of HOPs, repurposing them is an alternative approach, albeit a challenging task. Here we discover that alkyl bromide can act as a catalyst for the transfer of chlorine using alkyl chloride as the chlorine source. We demonstrate that this approach has a wide substrate scope, and we successfully apply it to reuse HOPs that include dichlorodiphenyltrichloroethane, hexabromocyclododecane, chlorinated paraffins, chloromethyl polystyrene and poly(vinyl chloride) (PVC). Moreover, we show that the synthesis of essential non-steroidal anti-inflammatory drugs can be achieved using PVC and hexabromocyclododecane, and we demonstrate that PVC waste can be used directly as a chlorinating agent. Overall, this methodology offers a promising strategy for repurposing HOPs.

16.
Pest Manag Sci ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847112

ABSTRACT

BACKGROUND: Plants have numerous defensive secondary metabolites to withstand insect attacks. Scoparone, which is extracted from the medicinal plant Artemisia capillaris, has potent acaricidal effects on Tetranychus cinnabarinus. Spirodiclofen, derived from a tetronic acid derivative, is a potent commercial acaricide that is extensively used globally. However, whether scoparone has synergistic effects when used in conjunction with spirodiclofen and the underlying synergistic mechanism remains unclear. RESULTS: Scoparone exhibited a potent synergistic effect when it was combined with spirodiclofen at a 1:9 ratio. Subsequently, cytochrome P450 monooxygenase (P450) activity, RNA-Seq and qPCR assays indicated that the enzyme activity of P450 and the expression of one P450 gene from T. cinnabarinus, TcCYP388A1, were significantly inhibited by scoparone and spirodiclofen + scoparone; conversely, P450 was activated in spirodiclofen-exposed mites. Importantly, RNAi-mediated silencing of the TcCYP388A1 gene markedly increased the susceptibility of spider mites to spirodiclofen, scoparone and spirodiclofen + scoparone, and in vitro, the recombinant TcCYP388A1 protein could metabolize spirodiclofen. Molecular docking and functional analyses further indicated that R117, which is highly conserved in Arachnoidea species, may be a vital specific binding site for scoparone in the mite TcCYP388A1 protein. This binding site was subsequently confirmed using mutagenesis data, which revealed that this binding site was the sole site selected by scoparone in spider mites over mammalian or fly CYP388A1. CONCLUSIONS: These results indicate that the synergistic effects of scoparone and spirodiclofen on mites occurs through the inhibition of P450 activity, thus reducing spirodiclofen metabolism. The synergistic effect of this potent natural product on the detoxification enzyme-targeted activity of commercial acaricides may offer a sustainable strategy for pest mite resistance management. © 2024 Society of Chemical Industry.

17.
Front Immunol ; 15: 1358602, 2024.
Article in English | MEDLINE | ID: mdl-38863699

ABSTRACT

Hepatocellular carcinoma (HCC) ranks as the sixth most common malignancy globally, with the majority of patients presenting at the initial diagnosis with locally advanced or metastatic disease, precluding the opportunity for curative surgical intervention. With the exploration and advancement of locoregional treatments, novel molecular-targeted therapies, anti-angiogenic agents, and immunomodulatory drugs, the management of HCC has seen an increase in objective response rates and prolonged duration of response significantly enhancing the potential for conversion to resectable disease in intermediate and advanced-stage unresectable HCC. Herein, we present a case of Barcelona Clinic Liver Cancer stage B unresectable HCC, where after two courses of treatment with transarterial chemoembolization combined with atezolizumab plus bevacizumab significant tumor reduction was achieved. Per Response Evaluation Criteria in Solid Tumors 1.1, partial response culminated in successful curative surgical resection. No drug-related adverse reactions occurred during hospitalization, and there has been no recurrence during the 11-month postoperative follow-up. For patients with Barcelona Clinic Liver Cancer stage B (intermediate-stage) unresectable HCC, the transarterial chemoembolization combined with atezolizumab plus bevacizumab regimen may offer improved therapeutic outcomes leading to a higher success rate of conversion therapy and, thus, improved survival.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Bevacizumab , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Bevacizumab/administration & dosage , Bevacizumab/therapeutic use , Chemoembolization, Therapeutic/methods , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Male , Neoplasm Staging , Middle Aged , Treatment Outcome , Combined Modality Therapy
18.
Water Res ; 260: 121900, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38870862

ABSTRACT

Membrane science is the key strategy to solve water shortage in the future, and its essence is energy and mass transfer. Due to the complexity and variety of the internal structure of membrane, the energy transfer theory of membrane is still a black box theory. Herein, a new fluid mechanics principle is introduced to establish the energy fluid theory of membrane, which is translated into the energy formula: such as the initial total pressure difference (ΔP), the flow rate of fluid exiting the membrane (v1 and v2), fluid density (ρ), and energy consumption by salt resistance (NSR): { [Formula: see text] +12ρv23}. The theoretical framework is not only helpful for the data analysis of the energy transfer process of membranes, but also helps to allow for more in-depth and specific theoretical research. For instance, the relationship between NSR and the concentration difference (C) of salt can be expressed as NSR = aCb (a-product constant, b-exponential constant, R2>0.99). Hence, the basic theory can not only be widely applied to a variety of membranes with complex internal structure, but also have a profound impact on the application and research of membrane science.

19.
Small ; : e2402701, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874085

ABSTRACT

The inevitable oxidation of nickel-metal-based catalysts exposed to the air will lead to instability and poor reproducibility of a catalytic interface, which is usually ignored and greatly hinders their application for the catalysis of alkaline hydrogen oxidation. The details on the formation of a world-class nickel-based HOR catalyst Ni3-MoOx/C-500 are reported via an interfacial reconstruction triggered by passive oxidation upon air exposure. Interfacial reconstruction, initiated with various Ni-Mo metal ratios and annealing temperature, can fine-tune the Ni-Mo interface with an increased work function and a reduced d-band center. The optimized Ni3-MoOx/C exhibits a record high mass activity of 102.8 mA mgNi -1, a top-level exchange current density of 76.5 µA cmNi -2, and exceptional resistance to CO poisoning at 1000 ppm CO for hours. The catalyzed alkaline exchange membrane fuel cell exhibits a maximum power output of 600 mW cm-2 and excellent stability, ranking it as one of the most active non-precious metals HOR catalysts to date.

20.
Imeta ; 3(2): e182, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882487

ABSTRACT

The Microbiome Protocols eBook (MPB) serves as a crucial bridge, filling gaps in microbiome protocols for both wet experiments and data analysis. The first edition, launched in 2020, featured 152 meticulously curated protocols, garnering widespread acclaim. We now extend a sincere invitation to researchers to participate in the upcoming 2nd version of MPB, contributing their valuable protocols to advance microbiome research.

SELECTION OF CITATIONS
SEARCH DETAIL
...