Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5107, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877001

ABSTRACT

Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.


Subject(s)
14-3-3 Proteins , Arabidopsis Proteins , Arabidopsis , Phytic Acid , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Phytic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Mutation , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Inositol Phosphates/metabolism
2.
Mol Plant ; 5(1): 176-86, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21976713

ABSTRACT

Plant roots move through the soil by elongation. This is vital to their ability to anchor the plant and acquire water and minerals from the soil. In order to identify new genes involved in root elongation in rice, we screened an ethyl methane sulfonate (EMS)-mutagenized rice library, and isolated a short root mutant, Osglu3-1. The map-based cloning results showed that the mutant was due to a point mutation in OsGLU3, which encodes a putative membrane-bound endo-1,4-ß-glucanase. Osglu3-1 displayed less crystalline cellulose content in its root cell wall, shorter root cell length, and a slightly smaller root meristem as visualized by restricted expression of OsCYCB1,1:GUS. Exogenous application of glucose can suppress both the lower root cell wall cellulose content and short root phenotypes of Osglu3-1. Consistently, OsGLU3 is ubiquitously expressed in various tissues with strong expression in root tip, lateral root, and crown root primodia. The fully functional OsGLU3-GFP was detected in plasma membrane, and FM4-64-labeled compartments in the root meristem and elongation zones. We also found that phosphate starvation, an environmental stress, altered cell wall cellulose content to modulate root elongation in a OsGLU3-dependant way.


Subject(s)
Cell Division , Cell Membrane/enzymology , Cellulase/metabolism , Oryza/enzymology , Plant Proteins/metabolism , Plant Roots/growth & development , Cell Membrane/genetics , Cellulase/genetics , Gene Expression Regulation, Plant , Oryza/cytology , Oryza/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Roots/enzymology , Plant Roots/genetics
3.
Planta ; 223(5): 882-90, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16254725

ABSTRACT

The floral organs are formed from floral meristem with a regular initiation pattern in angiosperm species. Flowers of naked seed rice (nsr) were characterized by the overdeveloped lemma and palea, the transformation of lodicules to palea-/lemma-like organs, the decreased number of stamens and occasionally extra pistils. Some nsr spikelets contained additional floral organs of four whorls and/or abnormal internal florets. The floral primordium of nsr spikelet is differentiated under an irregular pattern and an incomplete determination. And molecular analysis indicated that nsr was a novel homeotic mutation in OsMADS1, suggesting that OsMADS1 played a distinct role in regulating the differentiation pattern of floral primordium and in conferring the determination of flower meristem. The gain-of-function of OsMADS1 transgenic lines presented the transformation of outer glumes to lemma-/palea-like organs and no changes in length of lemma and palea, but loss-of-function of OsMADS1 transgenic lines displayed the overdeveloped lemma and palea. Both findings revealed that OsMADS1 played a role in specifying lemma and palea and acted as a repressor of overdevelopment of lemma and palea. Moreover, it was indicated that OsMADS1 upregulated the transcript level of AP3 homologue OsMADS16, using real-time PCR analysis on gain- and loss-of-function of OsMADS1 transgenic lines.


Subject(s)
Flowers/growth & development , Oryza/growth & development , Arabidopsis Proteins , Flowers/ultrastructure , Genes, Homeobox , MADS Domain Proteins , Microscopy, Electron, Scanning , Morphogenesis , Mutation , Oryza/genetics , Oryza/ultrastructure , Plants, Genetically Modified , RNA Interference , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...