Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Redox Biol ; 65: 102840, 2023 09.
Article in English | MEDLINE | ID: mdl-37566944

ABSTRACT

Oxidative stress is hypothesized to drive the progression of age-related macular degeneration (AMD). Retinal pigment epithelial (RPE) cell layer is important for supporting the function of retina and is particularly susceptible to oxidative stress-induced cell death. How RPE cells die in AMD, especially in geographic atrophy (GA), a late stage of dry AMD, is still controversial. The goal of this study is to compare the features and mechanisms of RPE cell death induced by different oxidative stresses, to identify potential universal therapeutic targets for GA. RPE cell death was induced both in vitro and ex vivo by 4-Hydroxynonenal (4-HNE), a major product of lipid peroxidation, sodium iodate (NaIO3) that has been widely used to model RPE cell death in dry AMD, a ferroptosis inducer RAS-selective lethal 3 (RSL3) or a necroptosis inducer shikonin. We found that RPE necroptosis and ferroptosis show common and distinct features. Common features include receptor-interacting protein kinase (RIPK)1/RIPK3 activation and lipid reactive oxygen species (ROS) accumulation, although lipid ROS accumulation is much milder during necroptosis. This supports cross talk between RPE ferroptosis and necroptosis pathways and is consistent with the rescue of RPE necroptosis and ferroptosis by RIPK1 inhibitor Necrostatin-1 (Nec-1) or in Ripk3-/- RPE explants. Distinct feature includes activated mixed lineage kinase domain like pseudokinase (MLKL) that is translocated to the cell membrane during necroptosis, which is not happening in ferroptosis. This is consistent with the failure to rescue RPE ferroptosis by MLKL inhibitor necrosulfonamide (NSA) or in Mlkl-/- RPE explants. Using this framework, we found that 4-HNE and NaIO3 induced RPE cell death likely through necroptosis based on the molecular features and the rescuing effect by multiple inhibitors. Our studies suggest that multiple markers and inhibitors are required to distinguish RPE necroptosis and ferroptosis, and that necroptosis inhibitor Nec-1 could be a potential therapeutic compound for GA since it inhibits RIPK1/RIPK3 activation and lipid ROS accumulation occurred in both necroptosis and ferroptosis pathways.


Subject(s)
Ferroptosis , Macular Degeneration , Humans , Cell Death , Lipids , Macular Degeneration/genetics , Macular Degeneration/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
2.
eNeuro ; 10(9)2023 09.
Article in English | MEDLINE | ID: mdl-37596046

ABSTRACT

Rod and cone photoreceptors degenerate in inherited and age-related retinal degenerative diseases, ultimately leading to loss of vision. Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have shown a link between TH signaling and retinal degeneration. This work investigates the effects of excessive TH signaling on photoreceptor function and survival in mice. C57BL/6, Thra1 -/-, Thrb2 -/-, Thrb -/-, and the cone dominant Nrl -/- mice received triiodothyronine (T3) treatment (5-20 µg/ml in drinking water) for 30 d, followed by evaluations of retinal function, photoreceptor survival/death, and retinal stress/damage. Treatment with T3 reduced light responses of rods and cones by 50-60%, compared with untreated controls. Outer nuclear layer thickness and cone density were reduced by ∼18% and 75%, respectively, after T3 treatment. Retinal sections prepared from T3-treated mice showed significantly increased numbers of TUNEL-positive, p-γH2AX-positive, and 8-OHdG-positive cells, and activation of Müller glial cells. Gene expression analysis revealed upregulation of the genes involved in oxidative stress, necroptosis, and inflammation after T3 treatment. Deletion of Thra1 prevented T3-induced degeneration of rods but not cones, whereas deletion of Thrb2 preserved both rods and cones. Treatment with an antioxidant partially preserved photoreceptors and reduced retinal stress responses. This study demonstrates that excessive TH signaling induces oxidative stress/damage and necroptosis, induces photoreceptor degeneration, and impairs retinal function. The findings provide insights into the role of TH signaling in retinal degeneration and support the view of targeting TH signaling for photoreceptor protection.


Subject(s)
Retinal Degeneration , Animals , Mice , Mice, Inbred C57BL , Retina , Thyroid Hormones , Retinal Cone Photoreceptor Cells
3.
Adv Exp Med Biol ; 1415: 353-358, 2023.
Article in English | MEDLINE | ID: mdl-37440056

ABSTRACT

The cone photoreceptor cyclic nucleotide-gated (CNG) channel plays a pivotal role in cone phototransduction. Mutations in genes encoding the channel subunits CNGA3 and CNGB3 account for about 80% of all cases of achromatopsia and are associated with progressive cone dystrophies. CNG channel deficiency leads to cellular/endoplasmic reticulum (ER) calcium dysregulation and ER stress-associated cone apoptosis. This work investigated the role of the ER calcium channel ryanodine receptor 1 (Ryr1) in ER stress and cone degeneration in CNG channel deficiency. The AAV-mediated CRISPR/SaCas9 genome editing was used to knock down Ryr1 specifically in cones. CNG channel-deficient mice displayed improved cone survival after subretinal injection of AAV2-SaCas9/gRNA-Ryr1, manifested as increased expression levels of cone proteins M-opsin, S-opsin, and cone arrestin. Knockdown of Ryr1 also led to reduced ER stress and increased expression levels of the ER-associated degradation proteins. This work demonstrates a role of Ryr1 in ER stress and cone degeneration in CNG channel deficiency, and supports strategies targeting ER calcium regulation for cone preservation.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels , Ryanodine Receptor Calcium Release Channel , Animals , Mice , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Proteolysis , Retinal Cone Photoreceptor Cells/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Opsins/genetics , Nucleotides, Cyclic/metabolism
4.
Cell Death Dis ; 13(3): 255, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314673

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. Progressive dystrophy of the retinal pigment epithelium (RPE) and photoreceptors is the characteristic of dry AMD, and oxidative stress/damage plays a central role in the pathogenic lesion of the disease. Thyroid hormone (TH) regulates cell growth, differentiation, and metabolism, and regulates development/function of photoreceptors and RPE in the retina. Population-/patient-based studies suggest an association of high free-serum TH levels with increased risk of AMD. We recently showed that suppressing TH signaling by antithyroid treatment reduces cell damage/death of the RPE and photoreceptors in an oxidative-stress/sodium iodate (NaIO3)-induced mouse model of AMD. This work investigated the effects of TH receptor (THR) deficiency on cell damage/death of the RPE and photoreceptors and the contribution of the receptor subtypes. Treatment with NaIO3 induced RPE and photoreceptor cell death/necroptosis, destruction, and oxidative damage. The phenotypes were significantly diminished in Thrα1-/-, Thrb-/-, and Thrb2-/- mice, compared with that in the wild-type (C57BL/6 J) mice. The involvement of the receptor subtypes varies in the RPE and retina. Deletion of Thrα1 or Thrb protected RPE, rods, and cones, whereas deletion of Thrb2 protected RPE and cones but not rods. Gene-expression analysis showed that deletion of Thrα1 or Thrb abolished/suppressed the NaIO3-induced upregulation of the genes involved in cellular oxidative-stress responses, necroptosis/apoptosis signaling, and inflammatory responses. In addition, THR antagonist effectively protected ARPE-19 cells and hRPE cells from NaIO3-induced cell death. This work demonstrates the involvement of THR signaling in cell damage/death of the RPE and photoreceptors after oxidative-stress challenge and the receptor-subtype contribution. Findings from this work support a role of THR signaling in the pathogenesis of AMD and the strategy of suppressing THR signaling locally in the retina for protection of the RPE/retina in dry AMD.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Aged , Animals , Cell Death , Disease Models, Animal , Humans , Macular Degeneration/pathology , Mice , Mice, Inbred C57BL , Oxidative Stress , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Pigment Epithelium/metabolism , Thyroid Hormones/metabolism
5.
FASEB J ; 35(6): e21579, 2021 06.
Article in English | MEDLINE | ID: mdl-33960001

ABSTRACT

Endoplasmic reticulum (ER) Ca2+ homeostasis relies on an appropriate balance between efflux- and influx-channel activity responding to dynamic changes of intracellular Ca2+ levels. Dysregulation of this complex signaling network has been shown to contribute to neuronal and photoreceptor death in neuro- and retinal degenerative diseases, respectively. In mice with cone cyclic nucleotide-gated (CNG) channel deficiency, a model of achromatopsia/cone dystrophy, cones display early-onset ER stress-associated apoptosis and protein mislocalization. Cones in these mice also show reduced cytosolic Ca2+ level and subsequent elevation in the ER Ca2+ -efflux-channel activity, specifically the inositol-1,4,5-trisphosphate receptor type 1 (IP3 R1), and deletion of IP3 R1 results in preservation of cones. This work investigated how preservation of ER Ca2+ stores leads to cone protection. We examined the effects of cone specific deletion of IP3 R1 on ER stress responses/cone death, protein localization, and ER proteostasis/ER-associated degradation. We demonstrated that deletion of IP3 R1 improves trafficking of cone-specific proteins M-/S-opsin and phosphodiesterase 6C to cone outer segments and reduces localization to cone inner segments. Consistent with the improved protein localization, deletion of IP3 R1 results in increased ER retrotranslocation protein expression, reduced proteasome subunit expression, reduced ER stress/cone death, and reduced retinal remodeling. We also observed the enhanced ER retrotranslocation in mice that have been treated with a chemical chaperone, supporting the connection between improved ER retrotranslocation/proteostasis and alleviation of ER stress. Findings from this work demonstrate the importance of ER Ca2+ stores in ER proteostasis and protein trafficking/localization in photoreceptors, strengthen the link between dysregulation of ER Ca2+ homeostasis and ER stress/cone degeneration, and support an involvement of improved ER proteostasis in ER Ca2+ preservation-induced cone protection; thereby identifying IP3 R1 as a critical mediator of ER stress and protein mislocalization and as a potential target to preserve cones in CNG channel deficiency.


Subject(s)
Calcium/metabolism , Cyclic Nucleotide-Gated Cation Channels/deficiency , Endoplasmic Reticulum/pathology , Inositol 1,4,5-Trisphosphate Receptors/physiology , Proteostasis , Retina/pathology , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Transport , Retina/metabolism , Signal Transduction
6.
Int J Mol Sci ; 22(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374621

ABSTRACT

Mutations in the CNGA3 gene, which encodes the A subunit of the cyclic guanosine monophosphate (cGMP)-gated cation channel in cone photoreceptor outer segments, cause total colour blindness, also referred to as achromatopsia. Cones lacking this channel protein are non-functional, accumulate high levels of the second messenger cGMP and degenerate over time after induction of ER stress. The cell death mechanisms that lead to loss of affected cones are only partially understood. Here, we explored the disease mechanisms in the Cnga3 knockout (KO) mouse model of achromatopsia. We found that another important effector of cGMP, the cGMP-dependent protein kinase 2 (Prkg2) is crucially involved in cGMP cytotoxicity of cones in Cnga3 KO mice. Virus-mediated knockdown or genetic ablation of Prkg2 in Cnga3 KO mice counteracted degeneration and preserved the number of cones. Analysis of markers of endoplasmic reticulum stress and unfolded protein response confirmed that induction of these processes in Cnga3 KO cones also depends on Prkg2. In conclusion, we identified Prkg2 as a novel key mediator of cone photoreceptor degeneration in achromatopsia. Our data suggest that this cGMP mediator could be a novel pharmacological target for future neuroprotective therapies.


Subject(s)
Color Vision Defects/etiology , Color Vision Defects/metabolism , Cyclic GMP-Dependent Protein Kinase Type II/metabolism , Cyclic Nucleotide-Gated Cation Channels/deficiency , Retinal Cone Photoreceptor Cells/metabolism , Animals , Biomarkers , Color Vision Defects/pathology , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinase Type II/genetics , Disease Models, Animal , Disease Susceptibility , Endoplasmic Reticulum Stress , Fluorescent Antibody Technique , Gene Expression , Mice , Mice, Knockout , Microscopy, Confocal , Models, Biological , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Unfolded Protein Response
7.
FASEB J ; 34(5): 6335-6350, 2020 05.
Article in English | MEDLINE | ID: mdl-32173907

ABSTRACT

Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca2+ influx in rod and cone photoreceptors. Mutations in cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. Mice lacking functional cone CNG channel show endoplasmic reticulum (ER) stress-associated cone degeneration. The elevated cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) signaling and upregulation of the ER Ca2+ channel ryanodine receptor 2 (RyR2) have been implicated in cone degeneration. This work investigates the potential contribution of RyR2 to cGMP/PKG signaling-induced ER stress and cone degeneration. We demonstrated that the expression and activity of RyR2 were highly regulated by cGMP/PKG signaling. Depletion of cGMP by deleting retinal guanylate cyclase 1 or inhibition of PKG using chemical inhibitors suppressed the upregulation of RyR2 in CNG channel deficiency. Depletion of cGMP or deletion of Ryr2 equivalently inhibited unfolded protein response/ER stress, activation of the CCAAT-enhancer-binding protein homologous protein, and activation of the cyclic adenosine monophosphate response element-binding protein, leading to early-onset cone protection. In addition, treatment with cGMP significantly enhanced Ryr2 expression in cultured photoreceptor-derived Weri-Rb1 cells. Findings from this work demonstrate the regulation of cGMP/PKG signaling on RyR2 in the retina and support the role of RyR2 upregulation in cGMP/PKG signaling-induced ER stress and photoreceptor degeneration.


Subject(s)
Cyclic GMP/metabolism , Endoplasmic Reticulum Stress , Proto-Oncogene Proteins c-akt/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/pathology , Ryanodine Receptor Calcium Release Channel/physiology , Animals , Basic-Leucine Zipper Transcription Factors/physiology , Cyclic Nucleotide-Gated Cation Channels/physiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Eye Proteins/physiology , Guanylate Cyclase/physiology , Mice , Mice, Knockout , Receptors, Cell Surface/physiology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Signal Transduction , Unfolded Protein Response
8.
Cell Death Dis ; 11(1): 24, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31932580

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Dry AMD is characterized by a progressive macular degeneration of the retinal pigment epithelium (RPE) and photoreceptors, and the RPE oxidative damage/dystrophy is at the core of the disease. Recent population/patients-based studies have shown an association of high free serum thyroid hormone (TH) levels with increased risk of AMD. This work investigated the effects of TH signaling inhibition on RPE and photoreceptor damage/cell death in an oxidative stress-induced mouse model of AMD. TH signaling inhibition was achieved by anti-thyroid drug treatment and oxidative stress was induced by sodium iodate (NaIO3) administration. Mice treated with NaIO3 showed severe RPE and photoreceptor cell death/necroptosis, destruction, oxidative damage, retinal stress, and reduced retinal function. Treatment with anti-thyroid drug protected RPE and photoreceptors from damage/cell death induced by NaIO3, reduced oxidative damage of RPE and photoreceptors, and preserved retinal function. Gene expression analysis showed that the NaIO3-induced RPE/photoreceptor damage/cell death involves multiple mechanisms, including cellular oxidative stress responses, activation of necroptosis/apoptosis signaling, and inflammatory responses. Treatment with anti-thyroid drug abolished these cellular stress/death responses. The findings of this study demonstrate a role of TH signaling in RPE and photoreceptor cell death after oxidative stress challenge, and support a role of TH signaling in the pathogenesis of AMD.


Subject(s)
Macular Degeneration/metabolism , Macular Degeneration/pathology , Photoreceptor Cells, Vertebrate/metabolism , Retinal Pigment Epithelium/metabolism , Signal Transduction , Thyroid Hormones/metabolism , Animals , Antithyroid Agents/pharmacology , Cell Death , Disease Models, Animal , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Iodates/pharmacology , Macular Degeneration/genetics , Macular Degeneration/physiopathology , Mice, Inbred C57BL , Necroptosis/drug effects , Oxidative Stress/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/physiopathology , Up-Regulation/drug effects , Up-Regulation/genetics
9.
eNeuro ; 6(3)2019.
Article in English | MEDLINE | ID: mdl-31182474

ABSTRACT

The photoreceptor cyclic nucleotide-gated (CNG) channel plays a pivotal role in phototransduction and cellular calcium homeostasis. Mutations in the cone photoreceptor CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. CNG channel deficiency leads to endoplasmic reticulum (ER) stress-associated cone apoptosis, protein mislocalization, and ER calcium dysregulation. This work investigated the potential mechanisms of protein mislocalization associated with ER calcium dysregulation using Cnga3-/- mice lacking ER Ca2+ channel ryanodine receptor 2 (RyR2) specifically in cones. Deletion of Ryr2 improved outer segment (OS) localization of the cone proteins M-opsin, S-opsin, and cone phosphodiesterase subunit α' (PDE6C) and decreased inner segment localization. One-month-old Cnga3-/- mice showed ∼30% of M-opsin, 55% of S-opsin, and 50% of PDE6C localized to the OS. Cnga3-/- mice with Ryr2 deletion at the same age showed almost 60% of M-opsin, 70% of S-opsin, and 70% of PDE6C localized to the OS. Deletion of Ryr2 nearly completely reversed elevations of the ER stress markers phospho-IRE1α and phospho-eIF2α and suppressed cone apoptosis. Consistent with the improved cone protein localization and reduced ER stress/cone apoptosis, cone survival was improved by deletion of Ryr2 The number of cones was increased by ∼28% in 2- to 4-month-old Cnga3-/- mice with Ryr2 deletion compared with age-matched Cnga3-/- mice. This work demonstrates a role of RyR2/ER calcium dysregulation in protein mislocalization, ER stress, and cone death. The findings provide novel insights into the mechanisms of photoreceptor degeneration and support strategies targeting ER calcium regulation to manage retinal degeneration.


Subject(s)
Cone Opsins/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Apoptosis , Cyclic Nucleotide-Gated Cation Channels/genetics , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Mice, Knockout , Retina/metabolism
10.
J Clin Invest ; 128(12): 5663-5675, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30418171

ABSTRACT

Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide-gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3-/-) mice to obtain triallelic Cnga3+/- Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.


Subject(s)
Color Vision Defects , Cyclic Nucleotide-Gated Cation Channels , Heterozygote , Ion Channel Gating , Mutation, Missense , Retinal Cone Photoreceptor Cells , Retinal Diseases , Amino Acid Substitution , Animals , Color Vision Defects/genetics , Color Vision Defects/metabolism , Color Vision Defects/pathology , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Transgenic , Mutation , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retinal Diseases/pathology
11.
FASEB J ; : fj201800484RR, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29874126

ABSTRACT

Thyroid hormone (TH) signaling has been shown to regulate cone photoreceptor viability. Suppression of TH signaling with antithyroid drug treatment or by targeting iodothyronine deiodinases and TH receptors preserves cones in mouse models of retinal degeneration, including the Leber congenital amaurosis Rpe65-deficient mice. This work investigates the cellular mechanisms underlying how suppressing TH signaling preserves cones in Rpe65-deficient mice, using mice deficient in type 2 iodothyronine deiodinase (Dio2), the enzyme that converts the prohormone thyroxine to the active hormone triiodothyronine (T3). Deficiency of Dio2 improved cone survival and function in Rpe65-/- and Rpe65-deficiency on a cone dominant background ( Rpe65-/-/ Nrl-/-) mice. Analysis of cell death pathways revealed that receptor-interacting serine/threonine-protein kinase (RIPK)/necroptosis activity was increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency reversed the alterations. Cell-stress analysis showed that the cellular oxidative stress responses were increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency abolished the elevations. Similarly, antithyroid drug treatment resulted in reduced RIPK/necroptosis activity and oxidative stress responses in Rpe65-/-/ Nrl-/- retinas. Moreover, treatment with T3 significantly induced RIPK/necroptosis activity and oxidative stress responses in the retina. This work shows that suppression of TH signaling reduces cellular RIPK/necroptosis activity and oxidative stress responses in degenerating retinas, suggesting a mechanism underlying the observed cone preservation.-Yang, F., Ma, H., Butler, M. R., Ding, X.-Q. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice.

12.
Adv Exp Med Biol ; 1074: 125-131, 2018.
Article in English | MEDLINE | ID: mdl-29721936

ABSTRACT

Leber congenital amaurosis (LCA) is a devastating pediatric retinal degenerative disease, accounting for 20% of blindness in children attending schools for the blind. Mutations in the RPE65 gene, which encodes the retinal pigment epithelium-specific isomerohydrolase RPE65, account for 16% of all LCA cases. Recent findings have linked cone photoreceptor viability to thyroid hormone (TH) signaling. TH signaling regulates cell proliferation, differentiation, and metabolism. At the cellular level, TH action is regulated by the two iodothyronine deiodinases, DIO2 and DIO3. DIO2 converts the prohormone thyroxine (T4) to the bioactive hormone triiodothyronine (T3), and DIO3 inactivates T3 and T4. The present work investigates the effects of overexpression of DIO3 to suppress TH signaling and thereby modulate cone death/survival. Subretinal delivery of AAV5-IRBP/GNAT2-hDIO3 induced robust expression of DIO3 in the mouse retina and significantly reduced the number of TUNEL-positive cells in the cone-dominant LCA model Rpe65 -/- /Nrl -/- mice. Our work shows that suppressing TH signaling by overexpression of DIO3 preserves cones, supporting that suppressing TH signaling locally in the retina may represent a treatment strategy for LCA management.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/therapeutic use , Iodide Peroxidase/therapeutic use , Leber Congenital Amaurosis/therapy , Retinal Cone Photoreceptor Cells/enzymology , cis-trans-Isomerases/deficiency , Animals , Apoptosis , Basic-Leucine Zipper Transcription Factors/deficiency , Eye Proteins/genetics , Gene Expression , Genes, Synthetic , Genetic Vectors/administration & dosage , Heterotrimeric GTP-Binding Proteins/genetics , Injections, Intraocular , Iodide Peroxidase/biosynthesis , Iodide Peroxidase/genetics , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/pathology , Mice , Mice, Knockout , Mutation , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Retinal Cone Photoreceptor Cells/pathology , Retinol-Binding Proteins/genetics , Thyroid Hormones/metabolism , Transduction, Genetic
13.
Vitam Horm ; 106: 333-349, 2018.
Article in English | MEDLINE | ID: mdl-29407441

ABSTRACT

Thyroid hormone (TH) is essential in numerous physiological functions and developmental processes. It acts through TH receptors (TRs) to regulate gene expression. The retina is the light-sensitive tissue lining the back of the eye and functions as the first step of the visual process. Rod and cone photoreceptors are specialized sensory neurons in the retina that initiate phototransduction. Rods are responsible for dim light vision, whereas cones are responsible for daytime vision, color vision, and visual acuity. TH signaling regulates retinal development and maintenance. The requirement of TH signaling is typically manifested as its regulation in the cone maturation and expression of the light-sensing pigment protein (cone opsin). There are two components of this regulation. First, TRß2, a TH-activated transcription factor, is expressed in immature cones and regulates cone differentiation and cone opsin expression; activation of TRß2 suppresses the expression of short-wave-sensitive opsin 1, induces the expression of medium-wave-sensitive opsin 1, and promotes dorsal-ventral opsin patterning. Second, hypothyroid mouse models display abnormalities in cone opsin expression, supporting the necessity of TH itself in retinal development. TH has been linked to photoreceptor survival. Excessive TH signaling leads to death of developing photoreceptors in healthy and diseased retina, whereas suppressing TH signaling preserves cones in mouse models of retinal degeneration. Some eye diseases, including age-related macular degeneration, have been associated with elevated circulation TH levels. Future work should aim to better understand how TH regulates retinal development, functionality, and survival, to examine the role of TH signaling in the pathogenesis of retinal degeneration, and to explore the potential of TH signaling manipulation for photoreceptor protection. Hopefully, these knowledge bases will lead to the identification of novel strategies for retinal disease prevention and management.


Subject(s)
Retina/growth & development , Retina/physiology , Retinal Diseases/metabolism , Thyroid Hormones/metabolism , Animals , Gene Expression Regulation , Humans
14.
J Biol Chem ; 292(27): 11189-11205, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28495882

ABSTRACT

Endoplasmic reticulum (ER) stress and mislocalization of improperly folded proteins have been shown to contribute to photoreceptor death in models of inherited retinal degenerative diseases. In particular, mice with cone cyclic nucleotide-gated (CNG) channel deficiency, a model for achromatopsia, display both early-onset ER stress and opsin mistrafficking. By 2 weeks of age, these mice show elevated signaling from all three arms of the ER-stress pathway, and by 1 month, cone opsin is improperly distributed away from its normal outer segment location to other retinal layers. This work investigated the role of Ca2+-release channels in ER stress, protein mislocalization, and cone death in a mouse model of CNG-channel deficiency. We examined whether preservation of luminal Ca2+ stores through pharmacological and genetic suppression of ER Ca2+ efflux protects cones by attenuating ER stress. We demonstrated that the inhibition of ER Ca2+-efflux channels reduced all three arms of ER-stress signaling while improving opsin trafficking to cone outer segments and decreasing cone death by 20-35%. Cone-specific gene deletion of the inositol-1,4,5-trisphosphate receptor type I (IP3R1) also significantly increased cone density in the CNG-channel-deficient mice, suggesting that IP3R1 signaling contributes to Ca2+ homeostasis and cone survival. Consistent with the important contribution of organellar Ca2+ signaling in this achromatopsia mouse model, significant differences in dynamic intraorganellar Ca2+ levels were detected in CNG-channel-deficient cones. These results thus identify a novel molecular link between Ca2+ homeostasis and cone degeneration, thereby revealing novel therapeutic targets to preserve cones in inherited retinal degenerative diseases.


Subject(s)
Calcium Signaling , Color Vision Defects/metabolism , Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Ion Channel Gating , Retinal Cone Photoreceptor Cells/metabolism , Animals , Cell Death/genetics , Cell Survival , Color Vision Defects/genetics , Disease Models, Animal , Endoplasmic Reticulum/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mice , Mice, Knockout , Retinal Cone Photoreceptor Cells/pathology
15.
FASEB J ; 31(8): 3425-3438, 2017 08.
Article in English | MEDLINE | ID: mdl-28428265

ABSTRACT

Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have implicated TH signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we demonstrated that antithyroid drug treatment and targeting iodothyronine deiodinases (DIOs) to suppress cellular tri-iodothyronine (T3) production or increase T3 degradation preserves cones. In this work, we investigated the effectiveness of inhibition of the TH receptor (TR). Two genes, THRA and THRB, encode TRs; THRB2 has been associated with cone viability. Using TR antagonists and Thrb2 deletion, we examined the effects of TR inhibition. Systemic and ocular treatment with the TR antagonists NH-3 and 1-850 increased cone density by 30-40% in the Rpe65-/- mouse model of Leber congenital amaurosis and reduced the number of TUNEL+ cells. Cone survival was significantly improved in Rpe65-/- and Cpfl1 (a model of achromatopsia with Pde6c defect) mice with Thrb2 deletion. Ventral cone density in Cpfl1/Thrb2-/- and Rpe65-/- /Thrb2-/- mice was increased by 1- to 4-fold, compared with age-matched controls. Moreover, the expression levels of TR were significantly higher in the cone-degeneration retinas, suggesting locally elevated TR signaling. This work shows that the effects of antithyroid treatment or targeting DIOs were likely mediated by TRs and that suppressing TR protects cones. Our findings support the view that inhibition of TR locally in the retina is a therapeutic strategy for retinal degeneration management.-Ma, H., Yang, F., Butler, M. R., Belcher, J., Redmond, T. M., Placzek, A. T., Scanlan, T. S., Ding, X.-Q. Inhibition of thyroid hormone receptor locally in the retina is a therapeutic strategy for retinal degeneration.


Subject(s)
Antithyroid Agents/pharmacology , Methimazole/pharmacology , Receptors, Thyroid Hormone/antagonists & inhibitors , Retina/metabolism , Retinal Degeneration/drug therapy , Animals , Antithyroid Agents/therapeutic use , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Death , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/metabolism , Gene Deletion , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Methimazole/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenoxyacetates/pharmacology , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinoblastoma , Triiodothyronine , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism
16.
FASEB J ; 30(12): 4313-4325, 2016 12.
Article in English | MEDLINE | ID: mdl-27623928

ABSTRACT

Recent studies have implicated thyroid hormone (TH) signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we found that antithyroid treatment preserves cones. This work investigates the significance of targeting intracellular TH components locally in the retina. The cellular TH level is mainly regulated by deiodinase iodothyronine (DIO)-2 and -3. DIO2 converts thyroxine (T4) to triiodothyronine (T3), which binds to the TH receptor, whereas DIO3 degrades T3 and T4. We examined cone survival after overexpression of DIO3 and inhibition of DIO2 and demonstrated the benefits of these manipulations. Subretinal delivery of AAV5-IRBP/GNAT2-DIO3, which directs expression of human DIO3 specifically in cones, increased cone density by 30-40% in a Rpe65-/- mouse model of Lebers congenital amaurosis (LCA) and in a Cpfl1 mouse with Pde6c defect model of achromatopsia, compared with their respective untreated controls. Intravitreal and topical delivery of the DIO2 inhibitor iopanoic acid also significantly improved cone survival in the LCA model mice. Moreover, the expression levels of DIO2 and Slc16a2 were significantly higher in the diseased retinas, suggesting locally elevated TH signaling. We show that targeting DIOs protects cones, and intracellular inhibition of TH components locally in the retina may represent a novel strategy for retinal degeneration management.-Yang, F., Ma, H., Belcher, J., Butler, M. R., Redmond, T. M., Boye, S. L., Hauswirth, W. W., Ding, X.-Q. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration.


Subject(s)
Iodide Peroxidase/metabolism , Retina/metabolism , Retinal Degeneration/metabolism , Animals , Cells, Cultured , Mice, Knockout , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Signal Transduction/physiology , Thyroid Hormones/metabolism , Triiodothyronine/metabolism
17.
J Biol Chem ; 291(16): 8721-34, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26893377

ABSTRACT

Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3(-/-)/Nrl(-/-) mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3(-/-)/Nrl(-/-) mice compared with Nrl(-/-) mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/metabolism , Light , Retinal Cone Photoreceptor Cells/metabolism , Animals , Cyclic Nucleotide-Gated Cation Channels/genetics , Humans , Mice , Mice, Knockout , Opsins/genetics , Opsins/metabolism , Retinal Cone Photoreceptor Cells/cytology
18.
Adv Exp Med Biol ; 854: 613-8, 2016.
Article in English | MEDLINE | ID: mdl-26427466

ABSTRACT

Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and apoptosis. In the retina, TH signaling plays a central role in cone opsin expression. TH signaling inhibits S opsin expression, stimulates M opsin expression, and promotes dorsal-ventral opsin patterning. TH signaling has also been associated with cone photoreceptor viability. Treatment with thyroid hormone triiodothyronine (T3) or induction of high T3 by deleting the hormone-inactivating enzyme type 3 iodothyronine deiodinase (DIO3) causes cone death in mice. This effect is reversed by deletion of the TH receptor (TR) gene. Consistent with the T3 treatment effect, suppressing TH signaling preserves cones in mouse models of retinal degeneration. The regulation of cone survival by TH signaling appears to be independent of its regulatory role in cone opsin expression. The mechanism by which TH signaling regulates cone viability remains to be identified. The current understanding of TH signaling regulation in photoreceptor viability suggests that suppressing TH signaling locally in the retina may represent a novel strategy for retinal degeneration management.


Subject(s)
Apoptosis/physiology , Retinal Cone Photoreceptor Cells/metabolism , Signal Transduction/physiology , Thyroid Hormones/metabolism , Animals , Apoptosis/genetics , Cell Survival/genetics , Cell Survival/physiology , Humans , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Mice, Knockout , Models, Biological , Signal Transduction/genetics
19.
Hum Gene Ther ; 26(9): 575-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26247368

ABSTRACT

Mutations in GUCY2D are the cause of Leber congenital amaurosis type 1 (LCA1). GUCY2D encodes retinal guanylate cyclase-1 (retGC1), a protein expressed exclusively in outer segments of photoreceptors and essential for timely recovery from photoexcitation. Recent clinical data show that, despite a high degree of visual disturbance stemming from a loss of cone function, LCA1 patients retain normal photoreceptor architecture, except for foveal cone outer segment abnormalities and, in some patients, foveal cone loss. These results point to the cone-rich central retina as a target for GUCY2D replacement. LCA1 gene replacement studies thus far have been conducted in rod-dominant models (mouse) or with vectors and organisms lacking clinical translatability. Here we investigate gene replacement in the Nrl(-/-) Gucy2e(-/-) mouse, an all-cone model deficient in retGC1. We show that AAV-retGC1 treatment fully restores cone function, cone-mediated visual behavior, and guanylate cyclase activity, and preserves cones in treated Nrl(-/-) Gucy2e(-/-) mice over the long-term. A novel finding was that retinal function could be restored to levels above that in Nrl(-/-) controls, contrasting results in other models of retGC1 deficiency. We attribute this to increased cyclase activity in treated Nrl(-/-) Gucy2e(-/-) mice relative to Nrl(-/-) controls. Thus, Nrl(-/-) Gucy2e(-/-) mice possess an expanded dynamic range in ERG response to gene replacement relative to other models. Lastly, we show that a candidate clinical vector, AAV5-GRK1-GUCY2D, when delivered to adult Nrl(-/-) Gucy2e(-/-) mice, restores retinal function that persists for at least 6 months. Our results provide strong support for clinical application of a gene therapy targeted to the cone-rich, central retina of LCA1 patients.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Eye Proteins/genetics , Guanylate Cyclase/genetics , Leber Congenital Amaurosis/therapy , Receptors, Cell Surface/genetics , Animals , Dependovirus/genetics , Disease Models, Animal , Genetic Therapy , Genetic Vectors , Guanylate Cyclase/metabolism , Injections, Intraocular , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/pathology , Mice, Inbred C57BL , Mice, Knockout , Opsins/genetics , Opsins/metabolism , Receptors, Cell Surface/metabolism , Retinal Cone Photoreceptor Cells/pathology , Treatment Outcome , Vision, Ocular
20.
J Biol Chem ; 290(34): 20880-20892, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26124274

ABSTRACT

Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca(2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3(-/-)/Nrl(-/-) mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca(2+) channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Endoplasmic Reticulum Stress/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Animals , Apoptosis , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Carbazoles/pharmacology , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic Nucleotide-Gated Cation Channels/deficiency , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Eye Proteins/genetics , Gene Expression Regulation , Guanylate Cyclase/deficiency , Guanylate Cyclase/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mice , Mice, Knockout , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Retinal Cone Photoreceptor Cells/cytology , Signal Transduction , Thionucleotides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...