Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 176(2): e14314, 2024.
Article in English | MEDLINE | ID: mdl-38654401

ABSTRACT

The ancient bayberry demonstrates superior resistance to both biotic and abiotic stresses compared to cultivated bayberry, yet the underlying mechanisms remain largely unexplored. This study investigates whether long-term bayberry cultivation enhances stress resistance through modulation of tissue-specific microbes and metabolites. Employing microbiome amplicon sequencing alongside untargeted mass spectrometry analysis, we scrutinize the role of endosphere and rhizosphere microbial communities and metabolites in shaping the differential resistance observed between ancient and cultivated bayberry trees. Our findings highlight the presence of core microbiome and metabolites across various bayberry tissues, suggesting that the heightened resistance of ancient bayberry may stem from alterations in rhizosphere and endosphere microbial communities and secondary metabolites. Specifically, enrichment of Bacillus in roots and stems, Pseudomonas in leaves, and Mortierella in rhizosphere soil of ancient bayberry was noted. Furthermore, correlation analysis underscores the significance of enriched microbial species in enhancing ancient bayberry's resistance to stresses, with elevated levels of resistance-associated metabolites such as beta-myrcene, benzothiazole, L-glutamic acid, and gamma-aminobutyric acid identified through GC-MS metabolomics analysis. The beneficial role of these resistance-associated metabolites was further elucidated through assessment of their promotive and allelopathic effects, as well as their phytostatic and antioxidant functions in lettuce plants. Ultimately, our study delves into the intrinsic reasons behind the greater resistance of ancient bayberry to biotic and abiotic stresses by evaluating the impact of long-term planting on the microbial community and metabolites in the bayberry endosphere and rhizosphere, shedding light on the complex dynamics of host-microbial interactions.


Subject(s)
Microbiota , Myrica , Rhizosphere , Stress, Physiological , Myrica/metabolism , Myrica/microbiology , Myrica/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Soil Microbiology
2.
Cell Death Dis ; 14(8): 498, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542030

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disorder with a dismal prognosis. The dysregulation of histone acetylation is of great significance in the pathogenesis and progression of B-ALL. Regarded as a fundamental acetyltransferase gene, the role of HBO1 (lysine acetyltransferase 7/KAT7) in B-ALL has not been investigated. Herein, we found that HBO1 expression was elevated in human B-ALL cells and associated with poor disease-free survival. Strikingly, HBO1 knockdown inhibited viability, proliferation, and G1-S cycle progression in B-ALL cells, while provoking apoptosis. In contrast, ectopic overexpression of HBO1 enhanced cell viability and proliferation but inhibited apoptotic activation. The results of in vivo experiments also certificated the inhibitory effect of HBO1 knockdown on tumor growth. Mechanistically, HBO1 acetylated histone H3K14, H4K8, and H4K12, followed by upregulating CTNNB1 expression, resulting in activation of the Wnt/ß-catenin signaling pathway. Moreover, a novel small molecule inhibitor of HBO1, WM-3835, potently inhibited the progression of B-ALL. Our data identified HBO1 as an efficacious regulator of CTNNB1 with therapeutic potential in B-ALL.


Subject(s)
Histones , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Acetylation , beta Catenin/genetics , beta Catenin/metabolism , Carcinogenesis , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones/metabolism , Wnt Signaling Pathway/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...