Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Sci ; 287: 110166, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31481226

ABSTRACT

In angiosperms, cyclic electron flow (CEF) around photosystem I (PSI) is more important for photoprotection under fluctuating light than under constant light. However, the underlying mechanism is not well known. In the present study, we measured the CEF activity, P700 redox state and electrochromic shift signal upon a sudden transition from low to high light in wild-type plants of Arabidopsis thaliana and Bletilla striata (Orchidaceae). Within the first 20 s after transition from low to high light, P700 was highly reduced in both species, which was accompanied with a sufficient proton gradient (ΔpH) across the thylakoid membranes. Meanwhile, the level of CEF activation was elevated. After transition from low to high light for 60 s, the plants generated an optimal ΔpH. Under such condition, PSI was highly oxidized and the level of CEF activation decreased to the steady state. Furthermore, the CEF activation was positively correlated to the P700 reduction ratio. These results indicated that upon a sudden transition from low to high light, the insufficient ΔpH led to the over-reduction of PSI electron carriers, which in turn stimulated the CEF around PSI. This transient stimulation of CEF not only favored the rapid ΔpH formation but also accepted electrons from PSI, thus protecting PSI at donor and acceptor sides. These findings provide new insights into the important role of CEF in regulation of photosynthesis under fluctuating light.


Subject(s)
Arabidopsis/metabolism , Electron Transport , Orchidaceae/metabolism , Photosystem I Protein Complex/metabolism , Arabidopsis/radiation effects , Chlorophyll/metabolism , Dose-Response Relationship, Radiation , Electron Transport/radiation effects , Light , Orchidaceae/radiation effects , Photosystem I Protein Complex/radiation effects
2.
Front Plant Sci ; 7: 130, 2016.
Article in English | MEDLINE | ID: mdl-26913043

ABSTRACT

The gall wasp, Leptocybe invasa (Hymenoptera; Eulophidae), is a devastating pest of eucalypt plantations in the Middle East, the Mediterranean basin, Africa, India, South-East Asia, and China. Heavy galling causes the leaves to warp and in extreme cases it may stunt the growth of the trees of Eucalyptus camaldulensis. However, the physiological mechanisms underlying how L. invasa inhibits the growth of plants of E. camaldulensis are unclear. Because the growth rate of plants is mainly dependent on photosynthesis that is largely correlated with hydraulic architecture, we speculate that galling of L. invasa depresses hydraulic conductance of stem and leaf. In the present study, we examined the effects of L. invasa galling on hydraulic architecture and photosynthetic parameters in E. camaldulensis plants. We found that galling of L. invasa significantly decreased stem hydraulic conductance (K stem), midday leaf water potential (Ψmd), minor vein density, and stomatal density (SD). Furthermore, the stomatal conductance (g s), chlorophyll content, CO2 assimilation rate (A n) and photosynthetic electron flow were reduced in infected plants. Therefore, the galling of L. invasa not only declined the water supply from stem to leaves, but also restricted water transport within leaf. As a result, galled plants of E. camaldulensis reduced leaf number, leaf area, SD and g s to balance water supply and transpirational demand. Furthermore, galled plants had lower leaf nitrogen content, leading to decreases in chlorophyll content, CO2 assimilation rate and photosynthetic electron flow. These results indicate that the change in hydraulic architecture is responsible for the inhibition of growth rate in galled plants.

SELECTION OF CITATIONS
SEARCH DETAIL