Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37292703

ABSTRACT

The ability for the brain to discriminate among visual stimuli is constrained by their retinal representations. Previous studies of visual discriminability have been limited to either low-dimensional artificial stimuli or pure theoretical considerations without a realistic encoding model. Here we propose a novel framework for understanding stimulus discriminability achieved by retinal representations of naturalistic stimuli with the method of information geometry. To model the joint probability distribution of neural responses conditioned on the stimulus, we created a stochastic encoding model of a population of salamander retinal ganglion cells based on a three-layer convolutional neural network model. This model not only accurately captured the mean response to natural scenes but also a variety of second-order statistics. With the model and the proposed theory, we computed the Fisher information metric over stimuli to study the most discriminable stimulus directions. We found that the most discriminable stimulus varied substantially across stimuli, allowing an examination of the relationship between the most discriminable stimulus and the current stimulus. By examining responses generated by the most discriminable stimuli we further found that the most discriminative response mode is often aligned with the most stochastic mode. This finding carries the important implication that under natural scenes, retinal noise correlations are information-limiting rather than increasing information transmission as has been previously speculated. We additionally observed that sensitivity saturates less in the population than for single cells and that as a function of firing rate, Fisher information varies less than sensitivity. We conclude that under natural scenes, population coding benefits from complementary coding and helps to equalize the information carried by different firing rates, which may facilitate decoding of the stimulus under principles of information maximization.

2.
Article in English | MEDLINE | ID: mdl-38013729

ABSTRACT

The visual system processes stimuli over a wide range of spatiotemporal scales, with individual neurons receiving input from tens of thousands of neurons whose dynamics range from milliseconds to tens of seconds. This poses a challenge to create models that both accurately capture visual computations and are mechanistically interpretable. Here we present a model of salamander retinal ganglion cell spiking responses recorded with a multielectrode array that captures natural scene responses and slow adaptive dynamics. The model consists of a three-layer convolutional neural network (CNN) modified to include local recurrent synaptic dynamics taken from a linear-nonlinear-kinetic (LNK) model [1]. We presented alternating natural scenes and uniform field white noise stimuli designed to engage slow contrast adaptation. To overcome difficulties fitting slow and fast dynamics together, we first optimized all fast spatiotemporal parameters, then separately optimized recurrent slow synaptic parameters. The resulting full model reproduces a wide range of retinal computations and is mechanistically interpretable, having internal units that correspond to retinal interneurons with biophysically modeled synapses. This model allows us to study the contribution of model units to any retinal computation, and examine how long-term adaptation changes the retinal neural code for natural scenes through selective adaptation of retinal pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...