Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2400101, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502025

ABSTRACT

 Microfluidic deprotonation approach is proposed to realize continuous, scalable, efficient, and uniform production of aramid nanofibers (ANFs) by virtue of large specific surface area, high mixing efficiency, strong heat transfer capacity, narrow residence time distribution, mild laminar-flow process, and amplification-free effect of the microchannel reactor. By means of monitoring capabilities endowed by the high transparency of the microchannel, the kinetic exfoliation process of original aramid particles is in situ observed and the corresponding exfoliation mechanism is established quantificationally. The deprotonated time can be reduced from the traditional several days to 7 min for the final colloidal dispersion due to the synergistic effect between enhanced local shearing/mixing and the rotational motion of aramid particles in microchannel revealed by numerical simulations. Furthermore, the cascade microfluidic processing approach is used to make various ANF colloidal aerogels including aerogel fibers, aerogel films, and 3D-printed aerogel articles. Comprehensive characterizations show that these cascade-microfluidic-processed colloidal aerogels have identical features as those prepared in batch-style mode, revealing the versatile use value of these ANFs. This work achieves significant progress toward continuous and efficient production of ANFs, bringing about appreciable prospects for the practical application of ANF-based materials and providing inspiration for exfoliating any other nano-building blocks.

2.
Angew Chem Int Ed Engl ; 63(22): e202403139, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38530206

ABSTRACT

Designing new acceptors is critical for intrinsically stretchable organic solar cells (IS-OSCs) with high efficiency and mechanical robustness. However, nearly all stretchable polymer acceptors exhibit limited efficiency and high-performance small molecular acceptors are very brittle. In this regard, we select thienylene-alkane-thienylene (TAT) as the conjugate-break linker and synthesize four dimerized acceptors by the regulation of connecting sites and halogen substitutions. It is found that the connecting sites and halogen substitutions considerably impact the overall electronic structures, aggregation behaviors, and charge transport properties. Benefiting from the optimization of the molecular structure, the dimerized acceptor exhibits rational phase separation within the blend films, which significantly facilitates exciton dissociation while effectively suppressing charge recombination processes. Consequently, FDY-m-TAT-based rigid OSCs render the highest power conversion efficiency (PCE) of 18.07 % among reported acceptors containing conjugate-break linker. Most importantly, FDY-m-TAT-based IS-OSCs achieve high PCE (14.29 %) and remarkable stretchability (crack-onset strain [COS]=18.23 %), significantly surpassing Y6-based counterpart (PCE=12.80 % and COS=8.50 %). To sum up, these findings demonstrate that dimerized acceptors containing conjugate-break linkers have immense potential in developing highly efficient and mechanically robust OSCs.

3.
Article in English | MEDLINE | ID: mdl-38165426

ABSTRACT

Cuproptosis is a new Cu-dependent programmed cell death manner that has shown regulatory functions in many tumor types, however, its mechanism in bladder cancer remains unclear. Here, we reveal that Phosphodiesterase 3B (PDE3B), a cuproptosis-associated gene, could reduce the invasion and migration of bladder cancer. PDE3B is downregulated in bladder cancer tissues, which is correlated with better prognosis. Conversely, overexpression of PDE3B in bladder cancer cell could significantly resist invasion and migration, which is consistent with the TCGA database results. Future study demonstrate the anti-cancer effect of PDE3B is mediated by Keratin 6B (KRT6B) which leads to the keratinization. Therefore, PDE3B can reduce KRT6B expression and inhibit the invasion and migration of bladder cancer. Meanwhile, increased expression of PDE3B was able to enhance the sensitivity of Cuproptosis drug thiram. This study show that PDE3B/KRT6B is a potential cancer therapeutic target and PDE3B activation is able to increase the sensitivity of bladder cancer cells to copper ionophores.

4.
Small ; 20(16): e2306964, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072815

ABSTRACT

In this study, single-crystalline BiSBr is synthesized using a solution-based approach and conducted a systematic characterization of its photoelectric properties and photovoltaic performances. UV photoelectron spectroscopy and density functional theory (DFT) calculations reveal that BiSBr is an indirect p-type semiconductor, characterized by distinct positions and compositions of the valence band maximum and conduction band minimum. The BiSBr single crystal microrod features a significant electrical conductivity of 14 800 S m-1 along the c-axis, denoting minimal carrier resistance in this direction. For photovoltaic performance assessment, the authors successfully fabricated two homogeneous BiSBr films on TiO2 porous substrates: A microsheet array film via physical vapor deposition (PVD) and solvothermal treatment, and a BiSBr microsheet film via PVD and thermal treatment. The solar cell, comprising a BiSBr microsheet array film with an architecture of fluorine-doped tin oxide FTO/TiO2/BiSBr/(I3 -/I-)/Pt, demonstrated a power conversation efficiency of 1.40%, ≈11 times that of BiSBr microsheet film counterpart. These preliminary results underscore the potential of BiSBr microsheet arrays, producible through low-cost solution processes, as adept light absorbers, enhancing photovoltaic efficiency through effective light scattering and promoting efficient electron-hole separation and transport.

5.
Small ; : e2309169, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072767

ABSTRACT

The conjugate expansion of nonfullerene acceptors is considered to be a promising approach for improving organic photovoltaic performance because of its function in tuning morphological structure and molecular stacking behavior. In this work, two nonfullerene acceptors are designed and synthesized using a 2D π-conjugate expansion strategy, thus enabling the construction of highly-efficient organic solar cells (OSCs). Compared with YB2B (incorporating dibromophenanthrene on the quinoxaline-fused core), YB2T (incorporating dibromobenzodithiophene on the quinoxaline-fused core) has red-shifted spectral absorption and better charge transport properties. Moreover, the more orderly and tightly intermolecular stacking of YB2T provides the possibility of forming a more suitable phase separation morphology in blend films. Through characterization and analysis, the YB2T-based blend film is found to have higher exciton dissociation efficiency and less charge recombination. Consequently, the power conversion efficiency (PCE) of 17.05% is achieved in YB2T-based binary OSCs, while YB2B-based devices only reached 10.94%. This study demonstrates the significance of the aromatic-ring substitution strategy for regulating the electronic structure and aggregation behavior of 2D nonfullerene acceptors, facilitating the development of devices with superior photovoltaic performance.

6.
ACS Appl Mater Interfaces ; 14(36): 41447-41455, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36049055

ABSTRACT

Thermal management of flexible/stretchable electronics has been a crucial issue. Mass supernumerary thermal heat is created in the repetitive course of deformation because of the large nanocontact resistance between electric conductive fillers, as well as the interfacial resistance between fillers and the polymer matrix. Here, we report a stretchable thermoplastic polyurethane (TPU)-boron nitride nanosheet (BNNS) composite film with a high in-plane thermal conductivity based on an air/water interfacial (AWI) assembly method. In addition to rigid devices, it was capable for thermal management of flexible electronics. During more than 2000 cycles of the bending-releasing process, the average saturated surface temperature of the flexible conductor covered with composite film with 30 wt % BNNSs was approximately 40.8 ± 1 °C (10.5 °C lower than that with pure TPU). Moreover, the thermal dissipating property of the composite under stretching was measured. All the results prove that this TPU-BNNS composite film is a candidate for thermal management of next-generation flexible/stretchable electronics with high power density.

7.
Cell Death Dis ; 13(8): 673, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922412

ABSTRACT

Amine oxidase copper-containing 1 (AOC1) is considered an oncogene in many types of tumors. Nevertheless, there have been no investigations of AOC1 and its regulatory mechanism in prostate cancer. Here, we reveal a novel action of AOC1 and a tumor suppressor mechanism in prostate cancer. AOC1 is downregulated in prostate cancer. Abatement of AOC1 in prostate cancer tissue is positively correlated with the tumor size, lymph node metastasis, and Gleason score for prostate cancer. Conversely, high expression of AOC1 is significantly associated with reduced proliferation and migration in prostate cancer both in vitro and in vivo. We show that the anticancer effect of AOC1 is mediated by its action on spermidine which leads to the activation of reactive oxygen species and ferroptosis. AOC1 expression in prostate cancer is positively regulated by the transcription factor SOX15. Therefore, SOX15 can transcriptionally promote AOC1 expression and strengthen this effect. Targeting AOC1 and SOX15 may be promising for the treatment of prostate cancer.


Subject(s)
Amine Oxidase (Copper-Containing) , Ferroptosis , Prostatic Neoplasms , Cell Proliferation/genetics , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , SOX Transcription Factors/genetics , SOX Transcription Factors/metabolism
8.
Front Cell Dev Biol ; 10: 851748, 2022.
Article in English | MEDLINE | ID: mdl-35669515

ABSTRACT

Background: Adrenocortical adenocarcinoma (ACC) is known to be a relatively uncommon malignant tumor of the adrenal gland with patients having a poor prognosis. At present, few reports are available concerning the m6A modifications of lncRNAs as well as their clinical and immunological significance in the occurrence and progression of ACC. Materials and Methods: In the present research, 21 m6A-related genes were analyzed. Both multivariate and univariate Cox regression analyses were conducted to examine the prognostic m6A-related lncRNAs. A sum of 165 m6A-related lncRNAs was obtained from The Cancer Genome Atlas (TCGA) dataset. Based on the expressions of m6A-related lncRNAs, all ACC patients were classified into distinct subgroups using the consistent clustering method. Finally, m6A-related lncRNAs that were shown to have prognostic value were utilized to develop an m6A-related lncRNA risk model, which may be employed in the prediction of prognosis and survival. Results: Using TCGA data set, 26 m6A-associated lncRNAs having putative prognostic values were identified according to their expression levels, TCGA-AAC patients were classified into two clusters with the aid of consistent clustering analysis. The correlation between the two clusters was low, in which cluster1 consisted of 42% of all ACC patients. The survival analysis showed that cluster1 was associated with an unfavorable prognosis relative to cluster2. A risk model was constructed incorporating 26 m6A-associated lncRNAs that were correlated with patient prognosis. The model was subsequently validated by univariate and multivariate Cox, receiver operating characteristic (ROC) curve, and survival analyses. We also observed that the m6A-related risk model performed well in anticipating prognoses and survival status of patients with AAC. The overall survival (OS) of the high-risk cohort, as predicted by the model, was lower as opposed to that of the low-risk cohort. Conclusion: In the present research, we developed a risk model consisting of 4 m6A-related long-noncoding RNAs (lncRNAs), which can exert independent predictive values in patients with ACC. Our findings demonstrated that these 4 m6A-related lncRNAs perform integral functions in the tumor immune microenvironment, and also revealed the possibility of using these lncRNAs to guide the development of prognostic classifications and therapy approaches for ACC patients.

9.
Sensors (Basel) ; 22(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35590838

ABSTRACT

Wind profile radar systems require antennas with multiple radiation beams for detecting wind velocity, as well as with a low sidelobe and dual polarization for enhancing the sensitivity for the weak signal reflected from the turbulence. This paper proposes a lens antenna operating at 24 GHz with four reconfigurable beams for wind profile radars. This lens antenna includes 2 × 2 corrugated horn antennas for radiating 24 GHz waves in two polarizations, and the dielectric lens for modulating four radiation beams with a high gain and low sidelobe. Experiments demonstrate that this lens antenna can realize reconfigurable beams with deflections of ±15° in dual polarizations, meanwhile with the gain of 30.58 dBi and the sidelobe of -20 dB. This proposed lens antenna can be applied to mmWave wind profile radars of wind turbines for enhancing wind power efficiency.

10.
Sensors (Basel) ; 22(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35591253

ABSTRACT

A dual-polarized continuous transverse stub (CTS) K-band antenna with reconfigurable four beams and low profile is proposed based on substrate-integrated-waveguide (SIW) design. It consists of a line source generator (LSG) on the bottom surface, a spherical-wave to plane-wave transforming part on the middle layer, and CTS radiators on the top surface. Particularly, the LSG has four SIW-based H-plane horns, and a chip is integrated to switch among the two pairs of horns, so as to transfer the quasi-TEM waves on the bottom surface by a ±10° deflection angle to the middle layer for the CTS radiators on the top surface, resulting in four reconfigurable scanning beams with 10° for two polarizations. The measurements show that it realizes four reconfigurable beams with a 25.8 dBi gain at 24 GHz, verifying the design. The proposed antenna takes into account the advantages of reconfigurable multi-beam, dual polarization, low side lobes, low profile, and high gain, which can be applied to K-band sensing, especially for wind profile radars.

11.
Bioengineered ; 13(3): 6293-6308, 2022 03.
Article in English | MEDLINE | ID: mdl-35212614

ABSTRACT

The key role of circular RNA (circRNA) in the malignant progression of cancers has been demonstrated. However, the role of circRNA midline-1 (circMID1) in prostate cancer (PCa) progression has not been clarified. Quantitative real-time PCR was used to measure relative expression. Function analysis was performed using EdU staining, colony formation assay, flow cytometry, wound healing assay, transwell assay and cell glycolysis detection. The protein levels were detected by Western blot analysis. RNA pull-down assay, dual-luciferase reporter assay and RIP assay were performed to verify RNA interaction. Animal experiments were utilized to explore the effects of circMID1 knockdown on PCa tumorigenesis in vivo. Our results showed that circMID1 was upregulated in PCa tissues and cells and its knockdown inhibited PCa cell proliferation, migration, invasion and glycolysis in vitro, as well as PCa tumorigenesis in vivo. IGF1R and YTHDC2 were highly expressed in PCa tissues and cells, and their expression was positively regulated by circMID1. IGF1R and YTHDC2 overexpression reversed the inhibitory effect of circMID1 silencing on PCa cell progression. In terms of mechanism, circMID1 could sponge miR-330-3p and miR-330-3p could target IGF1R and YTHDC2. Functional experiments showed that circMID1 sponged miR-330-3p to regulate PCa progression via the YTHDC2/IGF1R/AKT axis. In conclusion, our data confirmed that circMID1 might play a pro-cancer role in PCa, which promoted PCa progression through regulating the miR-330-3p/YTHDC2/IGF1R/AKT axis.


Subject(s)
Cell Proliferation/genetics , Glycolysis/genetics , Neoplasm Invasiveness/genetics , Prostatic Neoplasms , RNA, Circular/genetics , Animals , Cell Movement/genetics , Humans , Male , Mice , Mice, Nude , MicroRNAs/genetics , Middle Aged , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
12.
Macromol Rapid Commun ; 43(3): e2100636, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34847277

ABSTRACT

High performance organic field effect transistor devices based on intrinsically scalable materials are of great significance in wearable electronics. In this work, an exclusive approach is reported to rationale the carrier mobility and stretchability of the conjugate polymers (CPs) by modifying the symmetry of the side chains species. Semiconductor CPs with symmetrical alkyl side chains (P(C-C)), symmetrical siloxane side chains (P(Si-Si)), and asymmetrical silicon-carbon side chains (P(C-Si)) are synthesized to investigate the influence of these side chains on the carrier mobility and mechanical behavior. The result shows that silicon-carbon asymmetric side chains can modulate the aggregation degree of polymer chains with a coherence length of 134 Å and maintain the mobility at 0.90 cm2 V-1 s-1 . P(C-Si) exhibits superior tensile properties that even elongation up to 100% the value of mobility retains a majority properties. The main reason is that the lowest coherence length of P(C-Si) polymer leads to an increased proportion of amorphous zones in its polymer film, which efficiently dissipates mechanical stresses. This study provides an efficient strategy for the design and synthesis of the CPs with high carrier transport properties-mechanical stability.


Subject(s)
Polymers , Siloxanes , Ketones , Pyrroles , Semiconductors
13.
iScience ; 24(5): 102502, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34113833

ABSTRACT

Harvesting mechanical energy via a triboelectric nanogenerator (TENG) is a promising strategy for solving energy problems. However, it is necessary to develop an effective and safe energy managing circuit for preventing high voltage breaking electronic devices. Here, a universal managing circuit is developed to optimize TENG's output performance, which for the first time allows the TENG to safely power various sensor systems with a safe and stable voltage. Based on the circuit, TENG's output can be transformed into a stable voltage with tunable amplitude, while an enhanced short-circuit current of 94 mA with an energy loss lower than 5% is achieved. For demonstrations, three different types of TENGs, respectively, targeting at ocean energy, wind energy, and walking energy have been prepared to reveal the capability of the circuit. This study offers a strategy to greatly enhance the output performance of TENGs to provide useful guidance for constructing self-powered and distributed sensor systems.

14.
Research (Wash D C) ; 2021: 8564780, 2021.
Article in English | MEDLINE | ID: mdl-33748764

ABSTRACT

Highly sensitive ethanol sensors have been widely utilized in environmental protection, industrial monitoring, and drink-driving tests. In this work, a fully self-powered ethanol detector operating at room temperature has been developed based on a triboelectric nanogenerator (TENG). The gas-sensitive oxide semiconductor is selected as the sensory component for the ethanol detection, while the resistance change of the oxide semiconductor can well match the "linear" region of the load characteristic curve of TENG. Hence, the output signal of TENG can directly reveal the concentration change of ethanol gas. An accelerator gearbox is applied to support the operation of the TENG, and the concentration change of ethanol gas can be visualized on the Liquid Crystal Display. This fully self-powered ethanol detector has excellent durability, low fabrication cost, and high selectivity of 5 ppm. Therefore, the ethanol detector based on TENG not only provides a different approach for the gas detection but also further demonstrates the application potential of TENG for various sensory devices.

15.
Sci Adv ; 7(6)2021 Feb.
Article in English | MEDLINE | ID: mdl-33536215

ABSTRACT

Tactile sensation plays important roles in virtual reality and augmented reality systems. Here, a self-powered, painless, and highly sensitive electro-tactile (ET) system for achieving virtual tactile experiences is proposed on the basis of triboelectric nanogenerator (TENG) and ET interface formed of ball-shaped electrode array. Electrostatic discharge triggered by TENG can induce notable ET stimulation, while controlled distance between the ET electrodes and human skin can regulate the induced discharge current. The ion bombardment technique has been used to enhance the electrification capability of triboelectric polymer. Accordingly, TENG with a contact area of 4 cm2 is capable of triggering discharge, leading to a compact system. In this skin-integrated ET interface, touching position and motion trace on the TENG surface can be precisely reproduced on skin. This TENG-based ET system can work for many fields, including virtual tactile displays, Braille instruction, intelligent protective suits, or even nerve stimulation.

16.
BMC Urol ; 20(1): 193, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33287818

ABSTRACT

BACKGROUND: We found that the bladders of multiple sclerosis mice were significantly fibrotic. This study aimed to investigate the relationship between fibronectin 1 (FN1) and bladder fibrosis, as well as the microRNAs involved in FN1 regulation. METHODS: The degree of bladder smooth muscle fibrosis was observed by immunohistochemistry. In addition, we used quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting to determine FN1 expression in bladders with different grades of fibrosis. Bioinformatics analysis revealed that miR-199a-3p, miR-219c-5p and miR-3572-3p could inhibit FN1 synthesis. Therefore, miR-199a-3p, miR-219c-5p and miR-3572-3p were overexpressed or knocked down in bladder smooth muscle cells (BSMCs), and the respective transfection and FN1 knockdown efficiencies were detected by RT-qPCR. Only miR-219c-5p overexpression and knockdown produced the expected results. A dual luciferase reporter assay was used to determine the targeting relationship between miR-219c-5p and FN1. Flow cytometry and Cell Counting Kit 8 (CCK8) experiments confirmed that miR-219c-5p reduced FN1 expression and affected the biological activity of smooth muscle cells. Agomir and anagomir of miR-219c-5p were transfected in vivo to observe the change of bladder fibrosis in mice. RESULTS: With increasing bladder fibrosis, FN1 expression increased, while miR-199a-3p, miR-219c-5p, and miR-3572-3p expression levels decreased. The RT-qPCR results after transfection showed that only miR-219c-5p could regulate FN1. Indeed, the dual luciferase reporter assay results indicated that miR-219c-5p targeted FN1 directly. CCK8 and cell cycle assays showed that miR-219c-5p overexpression inhibited BSMC proliferation, while miR-219c-5p knockdown promoted BSMC proliferation. An apoptosis assay showed that miR-219c-5p overexpression promoted apoptosis, while miR-219c-5p knockdown inhibited BSMC apoptosis. The agomir and anagomir transfected with miR-219c-5p in vivo found that the bladder fibrosis of the mice in the agomir group was reduced, and the anagomir group was worse. CONCLUSIONS: Our findings indicate that FN1 up-regulation and miR-219c-5p down-regulation play an important role in the development of bladder fibrosis, and miR-219c-5p participates in bladder fibrosis by regulating FN1 expression. Thus, a novel antifibrotic function of miR-219c-5p is proposed, which may represent a potential target for the diagnosis and treatment of bladder fibrosis.


Subject(s)
Fibronectins/physiology , MicroRNAs/physiology , Urinary Bladder/pathology , Animals , Female , Fibrosis/genetics , Mice , Mice, Inbred C57BL
17.
Onco Targets Ther ; 13: 11237-11252, 2020.
Article in English | MEDLINE | ID: mdl-33173313

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are novel clusters of endogenous noncoding RNAs (ncRNAs) that are involved in the regulation of multiple biological processes in diverse types of cancers. However, the roles and precise mechanisms of circRNAs in renal cell carcinoma (RCC) occurrence and progression have not been clearly elucidated. METHODS: We identified the aberrantly expressed circRNAs in RCC by high-throughput RNA-seq assay and used qRT-PCR to test the expression level of circRNAs in RCC tissues. Loss-of-function experiments were executed to detect the biological roles of circPDK1 in the RCC cells both in vivo and in vitro. RNA Fish, luciferase reporter assays and Western blotting were used to explore the molecular mechanism of circPDK1 function. All data were expressed as the means ± standard error of the mean (SEM). Student's t-test, one-way ANOVA, Cox regression, an LSD-t-test, Pearson's chi-squared test, a Log-rank test, and linear regression analyses were used to evaluate the group differences. P < 0.05 was considered significant. RESULTS: CircPDK1 was overexpressed in RCC tissues and positively associated with patient tumor metastasis and renal cell invasion. The in vivo functional assays also revealed that circPDK1 drove RCC xenograft metastasis. CircPDK1 was mainly located in the cytoplasm, serving as a sponge of miR-377-3P to regulate RCC invasion and metastasis through NOTCH1 (Notch Homolog 1). Ectopic express of NOTCH1 in RCC cell lines will block the metastasis inhibition effect after circPDK1 knockdown. CONCLUSION: CircPDK1 is aberrantly expressed in RCC and promotes the metastasis of RCC cells mainly through sponging miR-377-3P and reducing its negative regulation of NOTCH1. Thus, circPDK1 may act as a therapeutic target and biomarker for RCC.

18.
Chem Commun (Camb) ; 56(79): 11867-11870, 2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33021250

ABSTRACT

Three isoindigo-based conjugated polymers modified with linear hybrid siloxane-based side chains were synthesized (PIID-Cm-Si7, m = 5-7). All polymers showed good solubilities in halogenated hydrocarbons, aromatic hydrocarbons, ethers, alkanes, and esters. The polymer films of PIID-C5-Si7, PIID-C6-Si7, and PIID-C7-Si7 achieved mobilities of 0.32, 0.82, and 1.58 cm2 V-1 s-1, respectively.

19.
ACS Appl Mater Interfaces ; 12(37): 41832-41841, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32865385

ABSTRACT

Developing nonchlorinated solvent-processed polymeric semiconductors to avoid environmental concerns and health hazards caused by chlorinated solvents is especially urgent. Here, a molecular design strategy, composed of backbone fluorination and side chain optimization, is used for preparing high-solubility and high-performance azaisoindigo-based polymers. The effects of different backbones and side chains on the solubility, film crystallinity, molecular stacking, and charge transport properties are mainly investigated. A long linear hybrid siloxane-based chain (C6-Si7) is chosen to improve the solubility, while the incorporation of fluorine (F) is used to enhance the film crystallinity and charge mobility. By optimizing the backbone and side chain, both solubility and charge mobility of the azaisoindigo-based polymer are significantly improved. As a result, PAIIDBFT-Si films processed with toluene, tetrahydrofuran, ether, and alkanes, achieved charge mobilities of 4.14, 3.78, 2.14, and 2.34 cm2 V-1 s-1, respectively. The current study provides an effective strategy for the design and synthesis of high-performance polymeric semiconductors processed with nonchlorinated solvents.

20.
ACS Appl Mater Interfaces ; 11(6): 6143-6153, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30666864

ABSTRACT

Triboelectric nanogenerators (TENGs) have been widely applied for energy harvesting and self-powered sensing, whereas smart deformable materials can be combined with the TENG to acquire a more intelligent and self-adaptive system. Here, based on the vapor-driven actuation material of a perfluorosulfonic acid ionomer (PFSA), we propose a type of humidity-responsive TENG. The integrated TENG array can automatically bend to the desired angles in response to different humidity conditions, and thus, it can effectively collect energy from both wind and rain drops, where the power density can reach 1.6 W m-2 at a wind speed of 25 m s-1 and 230 mW m-2 under rainy conditions. Meanwhile, this TENG array can fully lay down in dry weather, using the reflective surface to reflect sunlight and heat radiation. The vapor absorption process of the PSFA film can also result in the charge accumulation process. Accordingly, relying on the strong absorption capability of PFSA, a TENG-based vapor sensor with high sensitivity has been developed for monitoring chemical vapor leakage and humidity change. This work opens up a promising approach for the application of the humidity-responsive materials in the field of energy harvesting and self-powered sensors. It can also promote the development of TENG toward a more intelligent direction.

SELECTION OF CITATIONS
SEARCH DETAIL
...