Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Sci Rep ; 14(1): 15142, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956267

ABSTRACT

Multiple myeloma (MM) is an incurable hematological malignancy with poor survival. Accumulating evidence reveals that lactylation modification plays a vital role in tumorigenesis. However, research on lactylation-related genes (LRGs) in predicting the prognosis of MM remains limited. Differentially expressed LRGs (DELRGs) between MM and normal samples were investigated from the Gene Expression Omnibus database. Univariate Cox regression and LASSO Cox regression analysis were applied to construct gene signature associated with overall survival. The signature was validated in two external datasets. A nomogram was further constructed and evaluated. Additionally, Enrichment analysis, immune analysis, and drug chemosensitivity analysis between the two groups were investigated. qPCR and immunofluorescence staining were performed to validate the expression and localization of PFN1. CCK-8 and flow cytometry were performed to validate biological function. A total of 9 LRGs (TRIM28, PPIA, SOD1, RRP1B, IARS2, RB1, PFN1, PRCC, and FABP5) were selected to establish the prognostic signature. Kaplan-Meier survival curves showed that high-risk group patients had a remarkably worse prognosis in the training and validation cohorts. A nomogram was constructed based on LRGs signature and clinical characteristics, and showed excellent predictive power by calibration curve and C-index. Moreover, biological pathways, immunologic status, as well as sensitivity to chemotherapy drugs were different between high- and low-risk groups. Additionally, the hub gene PFN1 is highly expressed in MM, knocking down PFN1 induces cell cycle arrest, suppresses cell proliferation and promotes cell apoptosis. In conclusion, our study revealed that LRGs signature is a promising biomarker for MM that can effectively early distinguish high-risk patients and predict prognosis.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Multiple Myeloma , Profilins , Humans , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Prognosis , Profilins/genetics , Profilins/metabolism , Biomarkers, Tumor/genetics , Male , Female , Nomograms , Cell Proliferation/genetics , Gene Expression Profiling , Kaplan-Meier Estimate , Cell Line, Tumor , Transcriptome , Apoptosis/genetics , Middle Aged
2.
J Transl Med ; 22(1): 613, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956649

ABSTRACT

BACKGROUND: CD19-targeted chimeric antigen receptor T (CAR-T) cell therapy stands out as a revolutionary intervention, exhibiting remarkable remission rates in patients with refractory/relapsed (R/R) B-cell malignancies. However, the potential side effects of therapy, particularly cytokine release syndrome (CRS) and infections, pose significant challenges due to their overlapping clinical features. Promptly distinguishing between CRS and infection post CD19 target CAR-T cell infusion (CTI) remains a clinical dilemma. Our study aimed to analyze the incidence of infections and identify key indicators for early infection detection in febrile patients within 30 days post-CTI for B-cell malignancies. METHODS: In this retrospective cohort study, a cohort of 104 consecutive patients with R/R B-cell malignancies who underwent CAR-T therapy was reviewed. Clinical data including age, gender, CRS, ICANS, treatment history, infection incidence, and treatment responses were collected. Serum biomarkers procalcitonin (PCT), interleukin-6 (IL-6), and C-reactive protein (CRP) levels were analyzed using chemiluminescent assays. Statistical analyses employed Pearson's Chi-square test, t-test, Mann-Whitney U-test, Kaplan-Meier survival analysis, Cox proportional hazards regression model, Spearman rank correlation, and receiver operating characteristic (ROC) curve analysis to evaluate diagnostic accuracy and develop predictive models through multivariate logistic regression. RESULTS: In this study, 38 patients (36.5%) experienced infections (30 bacterial, 5 fungal, and 3 viral) within the first 30 days of CAR T-cell infusion. In general, bacterial, fungal, and viral infections were detected at a median of 7, 8, and 9 days, respectively, after CAR T-cell infusion. Prior allogeneic hematopoietic cell transplantation (HCT) was an independent risk factor for infection (Hazard Ratio [HR]: 4.432 [1.262-15.565], P = 0.020). Furthermore, CRS was an independent risk factor for both infection ((HR: 2.903 [1.577-5.345], P < 0.001) and severe infection (9.040 [2.256-36.232], P < 0.001). Serum PCT, IL-6, and CRP were valuable in early infection prediction post-CAR-T therapy, particularly PCT with the highest area under the ROC curve (AUC) of 0.897. A diagnostic model incorporating PCT and CRP demonstrated an AUC of 0.903 with sensitivity and specificity above 83%. For severe infections, a model including CRS severity and PCT showed an exceptional AUC of 0.991 with perfect sensitivity and high specificity. Based on the aforementioned analysis, we proposed a workflow for the rapid identification of early infection during CAR-T cell therapy. CONCLUSIONS: CRS and prior allogeneic HCT are independent infection risk factors post-CTI in febrile B-cell malignancy patients. Our identification of novel models using PCT and CRP for predicting infection, and PCT and CRS for predicting severe infection, offers potential to guide therapeutic decisions and enhance the efficacy of CAR-T cell therapy in the future.


Subject(s)
Antigens, CD19 , Fever , Immunotherapy, Adoptive , Humans , Female , Male , Middle Aged , Immunotherapy, Adoptive/methods , Adult , Antigens, CD19/metabolism , Infections/blood , Aged , ROC Curve , Young Adult , Retrospective Studies
3.
Biochem Biophys Res Commun ; 725: 150272, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38901224

ABSTRACT

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, induces deficits in cognition and information processing following chronic abuse. Adolescent ketamine misuse represents a significant global public health issue; however, the neurodevelopmental mechanisms underlying this phenomenon remain largely elusive. This study investigated the long-term effects of sub-chronic ketamine (Ket) administration on the medial prefrontal cortex (mPFC) and associated behaviors. In this study, Ket administration during early adolescence displayed a reduced density of excitatory synapses on parvalbumin (PV) neurons persisting into adulthood. However, the synaptic development of excitatory pyramidal neurons was not affected by ketamine administration. Furthermore, the adult Ket group exhibited hyperexcitability and impaired socialization and working memory compared to the saline (Sal) administration group. These results strongly suggest that sub-chronic ketamine administration during adolescence results in functional deficits that persist into adulthood. Bioinformatic analysis indicated that the gene co-expression module1 (M1) decreased expression after ketamine exposure, which is crucial for synapse development in inhibitory neurons during adolescence. Collectively, these findings demonstrate that sub-chronic ketamine administration irreversibly impairs synaptic development, offering insights into potential new therapeutic strategies.


Subject(s)
GABAergic Neurons , Interneurons , Ketamine , Parvalbumins , Prefrontal Cortex , Synapses , Animals , Ketamine/pharmacology , Ketamine/administration & dosage , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Parvalbumins/metabolism , Synapses/drug effects , Synapses/metabolism , Male , Interneurons/drug effects , Interneurons/metabolism , Mice , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Mice, Inbred C57BL , Excitatory Amino Acid Antagonists/pharmacology
4.
Blood ; 143(26): 2778-2790, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38603632

ABSTRACT

ABSTRACT: Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.


Subject(s)
Hepatocytes , Janus Kinase 2 , Liver , Receptor, Notch1 , Thrombopoietin , Animals , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Thrombopoietin/metabolism , Thrombopoietin/genetics , Mice , Liver/metabolism , Hepatocytes/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Mice, Knockout , Signal Transduction , Phosphorylation , Blood Platelets/metabolism , Mice, Inbred C57BL , Thrombocytopenia/metabolism , Thrombocytopenia/genetics , Thrombocytopenia/pathology
5.
Fish Shellfish Immunol ; 149: 109535, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582231

ABSTRACT

Mucosal immunity in mucosa-associated lymphoid tissues (MALTs) plays crucial roles in resisting infection by pathogens, including parasites, bacteria and viruses. However, the mucosal immune response in the MALTs of large yellow croaker (Larimichthys crocea) upon parasitic infection remains largely unknown. In this study, we investigated the role of B cells and T cells in the MALTs of large yellow croaker following Cryptocaryon irritans infection. Upon C. irritans infection, the total IgM and IgT antibody levels were significantly increased in the skin mucus and gill mucus. Notably, parasite-specific IgM antibody level was increased in the serum, skin and gill mucus following parasitic infection, while the level of parasite-specific IgT antibody was exclusively increased in MALTs. Moreover, parasitic infection induced both local and systemic aggregation and proliferation of IgM+ B cells, suggesting that the increased levels of IgM in mucus may be derived from both systemic and mucosal immune tissues. In addition, we observed significant aggregation and proliferation of T cells in the gill, head kidney and spleen, suggesting that T cells may also be involved in the systemic and mucosal immune responses upon parasitic infection. Overall, our findings provided further insights into the role of immunoglobulins against pathogenic infection, and the simultaneous aggregation and proliferation of both B cells and T cells at mucosal surfaces suggested potential interactions between these two major lymphocyte populations during parasitic infection.


Subject(s)
B-Lymphocytes , Ciliophora Infections , Ciliophora , Fish Diseases , Perciformes , T-Lymphocytes , Animals , Fish Diseases/immunology , Fish Diseases/parasitology , Perciformes/immunology , Ciliophora Infections/veterinary , Ciliophora Infections/immunology , B-Lymphocytes/immunology , Ciliophora/physiology , T-Lymphocytes/immunology , Immunity, Mucosal , Lymphoid Tissue/immunology , Immunoglobulin M/immunology , Immunoglobulin M/blood , Cell Proliferation
6.
Chem Res Toxicol ; 37(5): 731-743, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38634348

ABSTRACT

Acrylamide (ACR) is a common industrial contaminant with endocrine-disrupting toxicity. Numerous studies have indicated that females and diabetics are more sensitive to environmental contaminants. However, it remains unknown whether female diabetics are susceptible to ACR-induced toxicity and its potential mechanisms. Thus, the female ACR-exposure diabetic Balb/c mice model was established to address these issues. Results showed that ACR could induce liver injury in normal mice and cause more serious inflammatory cell infiltration, hepatocyte volume increase, and fusion in diabetic mice liver. Meanwhile, ACR could lead to exacerbation of diabetic symptoms in diabetic mice by disturbing the glucose and lipid metabolism in the liver, which mainly manifests as the accumulation of liver glycogen and liver lipids, the reduction of the activity/content of glycolytic and metabolizing enzyme as well as pentose phosphatase, upregulation of the gene expression in fatty acid transporter and gluconeogenesis, and downregulation of the gene expression in fatty acid synthesis and metabolism. Moreover, ACR exposure could induce oxidative stress, inflammation, and endoplasmic reticulum stress in the liver by a decrease in hepatic antioxidant enzyme activity and antioxidant content, an increase in inflammatory factor levels, and a change in the related protein expression of endoplasmic reticulum stress (ERS) and apoptosis-related pathways in diabetic mice. Statistical analysis results revealed that ACR-induced liver injury was highly correlated with inflammation and oxidative stress, and ERS and diabetic mice had a higher risk of liver injury than normal mice. Overall results suggested that female diabetic mice easily suffer from ACR-induced toxicity, and the reason was that ACR could induce further damage to the liver by worsening the condition of inflammation, oxidative stress, and ERS in the liver.


Subject(s)
Acrylamide , Diabetes Mellitus, Experimental , Endoplasmic Reticulum Stress , Mice, Inbred BALB C , Animals , Female , Acrylamide/toxicity , Endoplasmic Reticulum Stress/drug effects , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Oxidative Stress/drug effects
7.
Sci Rep ; 14(1): 9115, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643300

ABSTRACT

Acute Myeloid Leukemia (AML) is a malignant blood cancer with a high mortality rate. Neutrophil extracellular traps (NETs) influence various tumor outcomes. However, NET-related genes (NRGs) in AML had not yet received much attention. This study focuses on the role of NRGs in AML and their interaction with the immunological microenvironment. The gene expression and clinical data of patients with AML were downloaded from the TCGA-LAML and GEO cohorts. We identified 148 NRGs through the published article. Univariate Cox regression was used to analyze the association of NRGs with overall survival (OS). The least absolute shrinkage and selection operator were utilized to assess the predictive efficacy of NRGs. Kaplan-Meier plots visualized survival estimates. ROC curves assessed the prognostic value of NRG-based features. A nomogram, integrating clinical information and prognostic scores of patients, was constructed using multivariate logistic regression and Cox proportional hazards regression models. Twenty-seven NRGs were found to significantly impact patient OS. Six NRGs-CFTR, ENO1, PARVB, DDIT4, MPO, LDLR-were notable for their strong predictive ability regarding patient survival. The ROC values for 1-, 3-, and 5-year survival rates were 0.794, 0.781, and 0.911, respectively. In the training set (TCGA-LAML), patients in the high NRG risk group showed a poorer prognosis (p < 0.001), which was validated in two external datasets (GSE71014 and GSE106291). The 6-NRG signature and corresponding nomograms exhibit superior predictive accuracy, offering insights for pre-immune response evaluation and guiding future immuno-oncology treatments and drug selection for AML patients.


Subject(s)
Extracellular Traps , Hematologic Neoplasms , Leukemia, Myeloid, Acute , Humans , Prognosis , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Nomograms , Tumor Microenvironment
8.
CNS Neurosci Ther ; 30(2): e14618, 2024 02.
Article in English | MEDLINE | ID: mdl-38334061

ABSTRACT

AIMS: We investigated the potential mechanisms underlying the therapeutic efficacy of electroacupuncture (EA) at the Shuigou (GV26) and Baihui (GV20) acupoints in the treatment of ischemic stroke. METHODS: We assessed the therapeutic effects of EA on MCAO mice through behavioral studies and TTC staining. Various techniques, such as RT-PCR, immunofluorescence, and Western blots, were employed to evaluate the activation and polarization of microglia/macrophages, and changes in the TRPV4 ion channel. We used the TRPV4 antagonist GSK2193874 (GSK219) to verify the involvement of TRPV4 in the therapeutic effects of EA. RESULTS: EA effectively improved neurological impairments and reduced cerebral infarction volume in MCAO mice. It suppressed activated microglia/macrophages and inhibited their polarization toward the M1 phenotype post-MCAO. EA also downregulated the expression of pro-inflammatory cytokines, including Tnf-α, Il-6, Il-1ß, and Ccl-2 mRNA. Furthermore, EA reduced the elevated expression of TRPV4 following MCAO. Treatment with the TRPV4 antagonist GSK219 mirrored the effects of EA in MCAO mice. Notably, the combination of EA and GSK219 did not demonstrate an additive or synergistic effect. CONCLUSION: EA may inhibit neuroinflammation and exhibit a protective effect against ischemic brain injury by suppressing TRPV4 and the subsequent M1 polarization of microglia/macrophages.


Subject(s)
Brain Ischemia , Electroacupuncture , Ischemic Stroke , Reperfusion Injury , Stroke , Animals , Mice , Brain Ischemia/therapy , Brain Ischemia/metabolism , Electroacupuncture/methods , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Neuroinflammatory Diseases , Reperfusion Injury/metabolism , Stroke/therapy , Stroke/metabolism , TRPV Cation Channels/genetics
9.
J Leukoc Biol ; 115(6): 1094-1107, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38369808

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are implicated in the regulation of immune responses closely associated with poor clinical outcomes in cancer. However, the MDSC subtypes in non-Hodgkin's lymphoma (NHL) have not been systematically investigated. So, we investigated the percentage of MDSC subsets in 78 newly diagnosed NHL patients by flow cytometry. The results showed that all MDSC subsets increased in NHL patients compared with healthy donors. Notably, MDSCs, monocytic MDSCs, and CD14 + CD66b + MDSCs significantly increased in NHL patients compared with those with lymphadenitis donors. polymorphonuclear MDSCs (PMN-MDSCs), early-stage MDSCs (e-MDSCs), and the International Prognostic Index were independent risk factors for poor clinical efficacy and were involved in constructing the nomogram for predicting clinical efficacy. Progression-free survival (PFS) was significantly shorter in patients with high level of MDSC subsets, and PMN-MDSCs emerged as an independent prognostic factor for PFS. PMN-MDSCs, e-MDSCs, and the International Prognostic Index were involved in constructing the nomogram for predicting PFS. Patients with a higher percentage of MDSCs, PMN-MDSCs, e-MDSCs, and CD14 + CD66b + MDSCs experienced a shorter overall survival compared with those with lower percentages. In addition, research on mechanisms found that T cell function was suppressed and mediated by the expansion of MDSCs via involving arginase-1 and interleukin-10 in vitro and in vivo. In conclusion, our study demonstrates that the increased circulating MDSC subsets predict poor clinical efficacy and prognosis in NHL, potentially involving T cell suppression through MDSC subset expansion. These findings indicate the potential of MDSC subsets as comprehensive diagnostic, prognostic biomarkers, and therapeutic targets for NHL.


Subject(s)
Lymphoma, Non-Hodgkin , Myeloid-Derived Suppressor Cells , Humans , Myeloid-Derived Suppressor Cells/immunology , Male , Female , Middle Aged , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/pathology , Lymphoma, Non-Hodgkin/mortality , Lymphoma, Non-Hodgkin/diagnosis , Prognosis , Adult , T-Lymphocytes/immunology , Aged , Animals , Mice , Arginase/metabolism
10.
Thromb Haemost ; 124(7): 641-648, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38151026

ABSTRACT

BACKGROUND: Transforming growth factor-ß1 (TGF-ß1) modulates multiple cellular functions during development and tissue homeostasis. A large amount of TGF-ß1 is stored in platelet α-granules and released upon platelet activation. Whether platelet-derived TGF-ß1 plays a role in venous thrombosis remains unclear. This study intends to assess the role of platelet-derived TGF-ß1 in the development of venous thrombosis in mice. MATERIAL AND METHODS: TGF-ß1flox/flox and platelet-specific TGF-ß1-/- mice were utilized to assess platelet function in vitro, arterial thrombosis induced by FeCl3, tail bleeding time, prothrombin time (PT), activated partial thromboplastin time (APTT), and deep vein thrombosis induced through ligation of the inferior vena cava (IVC). The IVC sample was collected to measure accumulation of neutrophils, monocytes, and the formation of neutrophil extracellular traps (NETs) by immunofluorescence staining. RESULTS: TGF-ß1 deficiency in platelets did not affect the number of circulating platelets, platelet aggregation, adenosine triphosphate release, and integrin αIIbß3 activation. Meanwhile, TGF-ß1 deficiency did not alter the arterial thrombus formation, hemostasis, and coagulation time (PT and APTT), but significantly impaired venous thrombus formation, inhibited the recruitment and accumulation of neutrophils and monocytes in thrombi, as well as reduced formation of NETs and platelet-neutrophil complex. In addition, adoptive transfer of TGF-ß1flox/flox platelets to TGF-ß1-/- mice rescued the impaired venous thrombus formation, recruitment of leukocytes and monocytes, as well as the NETs formation. CONCLUSION: In conclusion, platelet-derived TGF-ß1 positively modulates venous thrombus formation in mice, indicating that targeting TGF-ß1 might be a novel approach for treating venous thrombosis without increasing the risk of bleeding.


Subject(s)
Blood Platelets , Mice, Knockout , Transforming Growth Factor beta1 , Venous Thrombosis , Animals , Venous Thrombosis/blood , Venous Thrombosis/metabolism , Transforming Growth Factor beta1/metabolism , Blood Platelets/metabolism , Mice , Disease Models, Animal , Mice, Inbred C57BL , Platelet Activation , Blood Coagulation , Platelet Aggregation , Extracellular Traps/metabolism , Male , Neutrophils/metabolism , Vena Cava, Inferior/pathology , Vena Cava, Inferior/metabolism , Hemostasis
11.
BMC Genomics ; 24(1): 763, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082219

ABSTRACT

BACKGROUND: Safflower (Carthamus tinctorius L.) is an oilseed crop with substantial medicinal and economic value. However, the methods for constructing safflower core germplasm resources are limited, and the molecular mechanisms of lipid biosynthesis in safflower seeds are not well understood. RESULTS: In this study, 11 oil-related quantitative traits and 50 pairs of InDel markers were used to assess the diversity of a collection of 605 safflower germplasms. The original safflower germplasm exhibited rich phenotypic diversity, with high variation for most of the phenotypic traits under investigation. Similarly, high genetic diversity was evaluated in the original germplasm, in which the mean Shannon's information index (I), observed heterozygosity (H0), and expected heterozygosity (He) were 0.553, 0.182, and 0.374, respectively. Four subgroups with strong genetic structures were identified and a core germplasm of 214 cultivars was constructed, which is well represented in the original germplasm. Meanwhile, differential expression analysis of the transcriptomes of high and low linoleic acid safflower varieties at two stages of seed development identified a total of 47 genes associated with lipid biosynthesis. High expression of the genes KAS II and SAD enhanced the synthesis and accumulation of oleic acid, while FAD genes like FAD2 (Chr8G0104100), FAD3, FAD7 and FAD8 promoted the consumption of oleic acid conversion. The coordinated regulation of these multiple genes ensures the high accumulation of oleic acid in safflower seed oil. CONCLUSIONS: Based on these findings, a core germplasm of 214 cultivars was constructed and 47 candidate genes related to unsaturated fatty acid biosynthesis and lipid accumulation were identified. These results not only provide guidance for further studies to elucidate the molecular basis of oil lipid accumulation in safflower seeds, but also contribute to safflower cultivar improvements.


Subject(s)
Carthamus tinctorius , Carthamus tinctorius/genetics , Oleic Acid , Phenotype , Seeds/genetics , Seeds/chemistry , Linoleic Acid
12.
Res Sq ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37961674

ABSTRACT

Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to cure in T-cell Acute Lymphoblastic Leukemia (T-ALL). Biomarker guided risk stratification and targeted therapy have the potential to improve outcomes in high-risk T-ALL; however, cellular and genetic factors contributing to treatment resistance remain unknown. Previous bulk genomic studies in T-ALL have implicated tumor heterogeneity as an unexplored mechanism for treatment failure. To link tumor subpopulations with clinical outcome, we created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic (CITE-seq/snATAC-seq) analysis to a cohort of 40 cases of T-ALL treated on the Children's Oncology Group AALL0434 clinical trial. The cohort was carefully selected to capture the immunophenotypic diversity of T-ALL, with early T-cell precursor (ETP) and Near/Non-ETP subtypes represented, as well as enriched with both relapsed and treatment refractory cases. Integrated analyses of T-ALL blasts and normal T-cell precursors identified a bone-marrow progenitor-like (BMP-like) leukemia sub-population associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL within two independent patient cohorts using bulk RNA-sequencing data from over 1300 patients. We defined the mutational landscape of BMP-like T-ALL, finding that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. We transcriptionally matched BMP-like blasts to early thymic seeding progenitors that have low NR3C1 expression and high stem cell gene expression, corresponding to a corticosteroid and conventional cytotoxic resistant phenotype we observed in ex vivo drug screening. To identify novel targets for BMP-like blasts, we performed in silico and in vitro drug screening against the BMP-like signature and prioritized BMP-like overexpressed cell-surface (CD44, ITGA4, LGALS1) and intracellular proteins (BCL-2, MCL-1, BTK, NF-κB) as candidates for precision targeted therapy. We established patient derived xenograft models of BMP-high and BMP-low leukemias, which revealed vulnerability of BMP-like blasts to apoptosis-inducing agents, TEC-kinase inhibitors, and proteasome inhibitors. Our study establishes the first multi-omic signatures for rapid risk-stratification and targeted treatment of high-risk T-ALL.

13.
Environ Sci Pollut Res Int ; 30(51): 111325-111343, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814044

ABSTRACT

Decabromodiphenyl ether (BDE-209), widely used in various industries for its excellent flame-retardant performance, could be enriched in humans and is closely associated with immune impairment. In addition, immune system is gradually declined and becoming more sensitive to environmental pollutants in the ageing process. Therefore, the immunotoxicity of BDE-209 (4, 40, and 400 mg/kg/day) to middle-aged mice and its recovery and susceptibility was first to be comprehensively investigated in this study. The results showed that BDE-209 exposure could lead to oxidative injury to immune organs (spleen, thymus, and liver), impair humoral (immunoglobulins), cellular (lymphopoiesis), and non-specific immunity, and disturb the expressions of the genes related to Th1/Th2 balance (T helper cells) in the middle-aged mice. In addition, Integrated Biomarker Response (IBR) indicated that BDE-209-induced immune impairment was challenging to self-regulated, and even exacerbated after 21 days of recovery and oxidative injury in immune organs could be the main reason. Furthermore, factorial analysis showed that middle-aged mice exposed to BDE-209 suffered from greater immune impairment than adult mice, and the immune impairment in aged mice is more difficult to be self-repaired than that in adult mice. It can be seen that the aged tend to suffer from BDE-209-induced persistent immune impairment and health threats.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Humans , Adult , Mice , Animals , Female , Middle Aged , Halogenated Diphenyl Ethers/toxicity , Liver/metabolism , Spleen/metabolism , Flame Retardants/toxicity
14.
Nat Commun ; 14(1): 4829, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563135

ABSTRACT

Human MutT Homolog 1 (MTH1) is a nucleotide pool sanitization enzyme that hydrolyzes oxidized nucleotides to prevent their mis-incorporation into DNA under oxidative stress. Expression and functional roles of MTH1 in platelets are not known. Here, we show MTH1 expression in platelets and its deficiency impairs hemostasis and arterial/venous thrombosis in vivo. MTH1 deficiency reduced platelet aggregation, phosphatidylserine exposure and calcium mobilization induced by thrombin but not by collagen-related peptide (CRP) along with decreased mitochondrial ATP production. Thrombin but not CRP induced Ca2+-dependent mitochondria reactive oxygen species generation. Mechanistically, MTH1 deficiency caused mitochondrial DNA oxidative damage and reduced the expression of cytochrome c oxidase 1. Furthermore, MTH1 exerts a similar role in human platelet function. Our study suggests that MTH1 exerts a protective function against oxidative stress in platelets and indicates that MTH1 could be a potential therapeutic target for the prevention of thrombotic diseases.


Subject(s)
Blood Platelets , Thrombosis , Humans , Blood Platelets/metabolism , Phosphoric Monoester Hydrolases/metabolism , Thrombin/pharmacology , Thrombin/metabolism , Oxidative Stress , Hemostasis , Nucleotides/metabolism , Mitochondria/metabolism , Thrombosis/genetics , Thrombosis/prevention & control , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism
15.
Heliyon ; 9(7): e17919, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483805

ABSTRACT

The influence of geological development factors such as reservoir heterogeneity needs to be comprehensively considered in the determination of oil well production control strategy. In the past, many optimization algorithms are introduced and coupled with numerical simulation for well control problems. However, these methods require a large number of simulations, and the experience of these simulations is not preserved by the algorithm. For each new reservoir, the optimization algorithm needs to start over again. To address the above problems, two reinforcement learning methods are introduced in this research. A personalized Deep Q-Network (DQN) algorithm and a personalized Soft Actor-Critic (SAC)algorithm are designed for optimal control determination of oil wells. The inputs of the algorithms are matrix of reservoir properties, including reservoir saturation, permeability, etc., which can be treated as images. The output is the oil well production strategy. A series of samples are cut from two different reservoirs to form a dataset. Each sample is a square area that takes an oil well at the center, with different permeability and saturation distribution, and different oil-water well patterns. Moreover, all samples are expanded by using image enhancement technology to further increase the number of samples and improve the coverage of the samples to the reservoir conditions. During the training process, two training strategies are investigated for each personalized algorithm. The second strategy uses 4 times more samples than the first strategy. At last, a new set of samples is designed to verify the model's accuracy and generalization ability. Results show that both the trained DQN and SAC models can learn and store historical experience, and push appropriate control strategies based on reservoir characteristics of new oil wells. The agreement between the optimal control strategy obtained by both algorithms and the global optimal strategy obtained by the exhaustive method is more than 95%. The personalized SAC algorithm shows better performance compared to the personalized DQN algorithm. Compared to the traditional Particle Swarm Optimization (PSO), the personalized models were faster and better at capturing complex patterns and adapting to different geological conditions, making them effective for real-time decision-making and optimizing oil well production strategies. Since a large amount of historical experience has been learned and stored in the algorithm, the proposed method requires only 1 simulation for a new oil well control optimization problem, which showing the superiority in computational efficiency.

16.
Ann Hematol ; 102(9): 2425-2434, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37382610

ABSTRACT

Previous studies on the prognostic value of soluble programmed cell death ligand 1 (sPD-L1) in lymphoma patients have yielded inconsistent results. Here, we conducted a meta-analysis and systematic review to investigate the prognostic significance of sPD-L1 in lymphoma, especially in diffuse large B-cell lymphoma (DLBCL) and NK/T-cell lymphoma (NK/TCL). A total of 11 studies with 1185 patients were included in the meta-analysis, and the combined results indicated that high sPD-L1 levels were associated with worse overall survival (OS) (HR = 2.27, 95%CI: 1.70-3.04) and progression-free survival (PFS) (HR = 2.68, 95%CI: 1.92-3.75). Furthermore, subgroup analysis showed that sPD-L1 remained a significant prognostic factor for OS. The meta-analysis indicated that sPD-L1 may be a potential prognostic biomarker for lymphoma, especially in DLBCL and NK/TCL, and high sPD-L1 levels were associated with worse survival prognosis.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Lymphoma, T-Cell, Peripheral , Humans , Prognosis , Ligands , Lymphoma, Large B-Cell, Diffuse/pathology , Apoptosis , B7-H1 Antigen , Biomarkers, Tumor
17.
Scand J Clin Lab Invest ; 83(5): 340-347, 2023 09.
Article in English | MEDLINE | ID: mdl-37355341

ABSTRACT

The objective of this study was to investigate the expression pattern of Wilms tumor 1 (WT1) gene at diagnosis, complete remission (CR) and relapse status in non-acute promyelocytic leukemia (non-APL) acute myeloid leukemia (AML) patients, and further explore the prognostic value of measurable residual disease (MRD) assessment by WT1 gene and multiparameter flow cytometry (MFC). Our results showed that the average expression level of WT1 was 4026 ± 616.1 copies/104 ABL at diagnosis, 155.3 ± 36.03 copies/104 ABL at CR, and 1766 ± 238.8 copies/104 ABL at relapse, with statistically significant differences (p = .000). ROC analysis showed that WT1 expression levels were 118.1 copies/104 ABL and MFC-MRD was 0.155%, which had good predictive efficacy for relapse of patients during consolidation therapy. Both WT1-MRD and MFC-MRD had a significant impact on relapse-free survival (RFS) and overall survival (OS). Patients with WT1-MRD positive or MFC-MRD positive were associated with worse RFS (HR 3.840, 95% CI 1.582-9.320, p = .003), (HR 4.464, 95% CI 1.841-10.984, p = .001) and worse OS (HR 2.963, 95% CI 1.058-8.295, p = .039), (HR 3.590, 95% CI 1.254-10.280, p = .017). Besides, compared with patients who were negative for both WT1-MRD and MFC-MRD, patients who were positive both WT1-MRD and MFC-MRD were associated with worse RFS (HR 6.200, 95% CI 2.206-17.430, p = .001) and worse OS (HR 4.886, 95% CI 1.388-17.197, p = .013). This study demonstrates that combined assessment of MRD by WT1 and MFC improves relapse and prognosis prediction in non-APL AML patients, and may help guide interventions for disease relapse.


Subject(s)
Leukemia, Myeloid, Acute , Leukemia, Promyelocytic, Acute , Humans , Prognosis , Flow Cytometry/methods , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Remission Induction , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , WT1 Proteins/genetics , WT1 Proteins/metabolism
18.
Article in English | MEDLINE | ID: mdl-36828348

ABSTRACT

Tetrabromobisphenol A-bis (2-hydroxyethyl) ether (TBBPA-DHEE) has been detected in various environmental media and organisms, and its ecological risks and health hazards have attracted great attention, but sufficient toxicological data have not proved the toxic effects of TBBPA-DHEE exposure on aquatic organism. In this study, the neurotoxicity and mechanism of zebrafish (3-month-old) exposed to TBBPA-DHEE (0.86 µg/L, 12.9 µg/L, 193.5 µg/L) were studied. Furthermore, the neurotoxicity susceptibility of different sexes of zebrafish was revealed. Behavioral studies revealed that TBBPA-DHEE exposure has significant differences in average speed, duration of mania, the distance between objects, and ATP content between male and female zebrafish. Slight damage in brain tissue of male zebrafish was found. The transcriptome analysis revealed that the molecular mechanism of neurotoxicity in mature female and male zebrafish is different. For mature female zebrafish, TBBPA-DHEE significantly affected the expression of genes related to behavior and development, and its mechanism may be that it can produce neurotoxicity by affecting related genes in the hormone, synapse, and Ca2+ signaling pathway. For mature male zebrafish, TBBPA-DHEE can significantly affect their behavior and expression of nerve-related genes. Results from the transcriptomic analysis suggests that the possible molecular mechanism may be through the inhibition of Ca2+ signal transmission and produce neurotoxicity by affecting the expression of related genes in neural synapses, Ca2+ signal, and MAPK signal in brain tissue of zebrafish. The results suggested that exposure to low-dose TBBPA-DHEE could induce neurotoxicity in zebrafish, and female and male zebrafish showed different toxic effects and molecular mechanisms.


Subject(s)
Flame Retardants , Polybrominated Biphenyls , Animals , Female , Male , Zebrafish/metabolism , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/metabolism , Flame Retardants/toxicity
19.
Article in English | MEDLINE | ID: mdl-36473636

ABSTRACT

TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE), one of the main derivatives of TBBPA, has been widely detected in environmental samples and been discovered to be potential neurotoxic. In this study, the juvenile zebrafish were selected as the research subject to explore the neurotoxicity and its mechanism of low-dose TBBPA-DHEE exposure, and to reveal the neurotoxicity susceptibility in different sexes. Behavioral studies revealed that TBBPA-DHEE could significantly reduce the swimming velocity, maximum acceleration and cumulative duration of high-speed mobility, significantly increasing the cumulative duration of low-speed mobility and average social distance. It significantly reduced the contents of ATP, glutamate and Ca2+ in the whole brain. The histopathological study demonstrated that TBBPA-DHEE could cause brain tissue damage in female and male juvenile zebrafish. The comprehensive data analysis indicated that female zebrafish were more susceptible to TBBPA-DHEE exposure than male zebrafish. Transcriptomic analysis showed that TBBPA-DHEE could significantly affect the expressions of behavioral and development-related genes. Furthermore, female and male juvenile zebrafish have different molecular mechanisms of neurotoxicity. For female juvenile zebrafish, the potential mechanism of neurotoxicity could be that it interfered with the feedback regulation of nerves by affecting the related genes expressions in the signaling pathways such as Ca2+ signaling, Wnt signaling and synapses. For male juvenile zebrafish, the potential mechanism of neurotoxicity may be through affecting the expression of related genes in hormones and neuro-related genes. This research could reveal the potential neurotoxicity of TBBPA-DHEE to aquatic organisms, which will be helpful to reveal the health effects of the emerging environmental pollutants.


Subject(s)
Flame Retardants , Polybrominated Biphenyls , Animals , Female , Male , Zebrafish/genetics , Ether , Ethers/analysis , Ethyl Ethers , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/analysis , Flame Retardants/toxicity
20.
Thromb Haemost ; 123(2): 207-218, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36252813

ABSTRACT

Intracellular cyclic GMP (cGMP) inhibits platelet function. Platelet cGMP levels are controlled by phosphodiesterase 5A (PDE5A)-mediated degradation. However, the exact role of PDE5A in platelet function and thrombus formation remains poorly understood. In this study, we characterized the role of PDE5A in platelet activation and function. Platelets were isolated from wild type or PDE5A-/- mice to measure platelet aggregation, activation, phosphatidylserine exposure (annexin-V binding), reactive oxygen species (ROS) generation, platelet spreading as well as clot retraction. Cytosolic calcium mobilization was measured using Fluo-4 AM by a microplate reader. Western blot was used to measure the phosphorylation of VASP, ERK1/2, p38, JNK, and AKT. FeCl3-induced arterial thrombosis and venous thrombosis were assessed to evaluate the in vivo hemostatic function and thrombus formation. Additionally, in vitro thrombus formation was assessed in a microfluidic whole-blood perfusion assay. PDE5A-deficient mice presented significantly prolonged tail bleeding time and delayed arterial and venous thrombus formation. PDE5A deficiency significantly inhibited platelet aggregation, ATP release, P-selectin expression, and integrin aIIbb3 activation. In addition, an impaired spreading on collagen or fibrinogen and clot retraction was observed in PDE5A-deficient platelets. Moreover, PDE5A deficiency reduced phosphatidylserine exposure, calcium mobilization, ROS production, and increased intracellular cGMP level along with elevated VASP phosphorylation and reduced phosphorylation of ERK1/2, p38, JNK, and AKT. In conclusion, PDE5A modulates platelet activation and function and thrombus formation, indicating that therapeutically targeting it might be beneficial for the treatment of thrombotic diseases.


Subject(s)
Proto-Oncogene Proteins c-akt , Thrombosis , Mice , Animals , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Calcium/metabolism , Phosphatidylserines/metabolism , Reactive Oxygen Species/metabolism , Platelet Aggregation , Platelet Activation , Blood Platelets/metabolism , Phosphorylation , Cyclic GMP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...