Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 9(6): 1467-1482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750176

ABSTRACT

Bacteria such as the oral microbiome member Peptostreptococcus anaerobius can exacerbate colorectal cancer (CRC) development. Little is known regarding whether these immunomodulatory bacteria also affect antitumour immune checkpoint blockade therapy. Here we show that administration of P. anaerobius abolished the efficacy of anti-PD1 therapy in mouse models of CRC. P. anaerobius both induced intratumoral myeloid-derived suppressor cells (MDSCs) and stimulated their immunosuppressive activities to impair effective T cell responses. Mechanistically, P. anaerobius administration activated integrin α2ß1-NF-κB signalling in CRC cells to induce secretion of CXCL1 and recruit CXCR2+ MDSCs into tumours. The bacterium also directly activated immunosuppressive activity of intratumoral MDSCs by secreting lytC_22, a protein that bound to the Slamf4 receptor on MDSCs and promoted ARG1 and iNOS expression. Finally, therapeutic targeting of either integrin α2ß1 or the Slamf4 receptor were revealed as promising strategies to overcome P. anaerobius-mediated resistance to anti-PD1 therapy in CRC.


Subject(s)
Colorectal Neoplasms , Myeloid-Derived Suppressor Cells , Programmed Cell Death 1 Receptor , Animals , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Mice , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/microbiology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Cell Line, Tumor , Integrin alpha2beta1/metabolism , Immune Checkpoint Inhibitors/pharmacology , Signaling Lymphocytic Activation Molecule Family/metabolism , Mice, Inbred C57BL , Signal Transduction , Drug Resistance, Neoplasm , Disease Models, Animal , Female , NF-kappa B/metabolism
2.
Gut ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599786

ABSTRACT

OBJECTIVE: Probiotic Lactococcus lactis is known to confer health benefits to humans. Here, we aimed to investigate the role of L. lactis in colorectal cancer (CRC). DESIGN: L. lactis abundance was evaluated in patients with CRC (n=489) and healthy individuals (n=536). L. lactis was isolated from healthy human stools with verification by whole genome sequencing. The effect of L. lactis on CRC tumourigenesis was assessed in transgenic Apc Min/+ mice and carcinogen-induced CRC mice. Faecal microbiota was profiled by metagenomic sequencing. Candidate proteins were characterised by nano liquid chromatography-mass spectrometry. Biological function of L. lactis conditioned medium (HkyuLL 10-CM) and functional protein was studied in human CRC cells, patient-derived organoids and xenograft mice. RESULTS: Faecal L. lactis was depleted in patients with CRC. A new L. lactis strain was isolated from human stools and nomenclated as HkyuLL 10. HkyuLL 10 supplementation suppressed CRC tumourigenesis in Apc Min/+ mice, and this tumour-suppressing effect was confirmed in mice with carcinogen-induced CRC. Microbiota profiling revealed probiotic enrichment including Lactobacillus johnsonii in HkyuLL 10-treated mice. HkyuLL 10-CM significantly abrogated the growth of human CRC cells and patient-derived organoids. Such protective effect was attributed to HkyuLL 10-secreted proteins, and we identified that α-mannosidase was the functional protein. The antitumourigenic effect of α-mannosidase was demonstrated in human CRC cells and organoids, and its supplementation significantly reduced tumour growth in xenograft mice. CONCLUSION: HkyuLL 10 suppresses CRC tumourigenesis in mice through restoring gut microbiota and secreting functional protein α-mannosidase. HkyuLL 10 administration may serve as a prophylactic measure against CRC.

3.
Gut Microbes ; 15(2): 2263934, 2023 12.
Article in English | MEDLINE | ID: mdl-37795995

ABSTRACT

As with many diseases, tumor formation in colorectal cancer (CRC) is multifactorial and involves immune, environmental factors and various genetics that contribute to disease development. Accumulating evidence suggests that the gut microbiome is linked to the occurrence and development of CRC, and these microorganisms are important for immune maturation. However, a systematic perspective integrating microbial profiling, T cell receptor (TCR) and somatic mutations in humans with CRC is lacking. Here, we report distinct features of the expressed TCRß repertoires in the peripheral blood of and CRC patients (n = 107) and healthy donors (n = 30). CRC patients have elevated numbers of large TCRß clones and they have very low TCR diversity. The metagenomic sequencing data showed that the relative abundance of Fusobacterium nucleatum (F. nucleatum), Escherichia coli and Dasheen mosaic virus were elevated consistently in CRC patients (n = 97) compared to HC individuals (n = 30). The abundance of Faecalibacterium prausnitzii and Roseburia intestinalis was reduced in CRC (n = 97) compared to HC (n = 30). The correlation between somatic mutations of target genes (16 genes, n = 79) and TCR clonality and microbial biomarkers in CRC had been investigated. Importantly, we constructed a random forest classifier (contains 15 features) based on microbiome and TCR repertoires, which can be used as a clinical detection method to screen patients for CRC. We also analysis of F. nucleatum-specific TCR repertoire characteristics. Collectively, our large-cohort multi-omics data aimed to identify novel biomarkers to inform clinical decision-making in the detection and diagnosis of CRC, which is of possible etiological and diagnostic significance.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Fusobacterium nucleatum , Biomarkers , Mutation , Receptors, Antigen, T-Cell/genetics
4.
Nucleic Acids Res ; 51(22): 12140-12149, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37904586

ABSTRACT

Gut phages have an important impact on human health. Methylation plays key roles in DNA recognition, gene expression regulation and replication for phages. However, the DNA methylation landscape of gut phages is largely unknown. Here, with PacBio sequencing (2120×, 4785 Gb), we detected gut phage methylation landscape based on 22 673 gut phage genomes, and presented diverse methylation motifs and methylation differences in genomic elements. Moreover, the methylation rate of phages was associated with taxonomy and host, and N6-methyladenine methylation rate was higher in temperate phages than in virulent phages, suggesting an important role for methylation in phage-host interaction. In particular, 3543 (15.63%) phage genomes contained restriction-modification system, which could aid in evading clearance by the host. This study revealed the DNA methylation landscape of gut phage and its potential roles, which will advance the understanding of gut phage survival and human health.


Subject(s)
Bacteriophages , DNA Methylation , Gastrointestinal Microbiome , Humans , Bacteriophages/physiology , Bacteria/virology , Archaea/virology , DNA Restriction-Modification Enzymes
5.
Cell Rep Med ; 4(8): 101144, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37586322

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is an emerging risk factor of hepatocellular carcinoma (HCC). However, the mechanism and target therapy of NAFLD-HCC are still unclear. Here, we identify that the N6-methyladenosine (m6A) methyltransferase METTL3 promotes NAFLD-HCC. Hepatocyte-specific Mettl3 knockin exacerbated NAFLD-HCC formation, while Mettl3 knockout exerted the opposite effect in mice. Single-cell RNA sequencing revealed that METTL3 suppressed antitumor immune response by reducing granzyme B (GZMB+) and interferon gamma-positive (IFN-γ+) CD8+ T cell infiltration, thereby facilitating immune escape. Mechanistically, METTL3 mediates sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) mRNA m6A to promote its translation, leading to the activation of cholesterol biosynthesis. This enhanced secretion of cholesterol and cholesteryl esters that impair CD8+ T cell function in the tumor microenvironment. Targeting METTL3 by single-guide RNA, nanoparticle small interfering RNA (siRNA), or pharmacological inhibitor (STM2457) in combination with anti-programmed cell death protein 1 (PD-1) synergized to reinvigorate cytotoxic CD8+ T cells and mediate tumor regression. Together, METTL3 is a therapeutic target in NAFLD-HCC, especially in conjunction with immune checkpoint blockade (ICB) therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Methyltransferases , Non-alcoholic Fatty Liver Disease , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , CD8-Positive T-Lymphocytes , Immunotherapy , Interferon-gamma/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Methyltransferases/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/complications , Tumor Microenvironment
6.
J Hepatol ; 79(6): 1352-1365, 2023 12.
Article in English | MEDLINE | ID: mdl-37459922

ABSTRACT

BACKGROUND & AIMS: Recent studies have highlighted the role of the gut microbiota and their metabolites in non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). We aimed to identify specific beneficial bacterial species that could be used prophylactically to prevent NAFLD-HCC. METHODS: The role of Bifidobacterium pseudolongum was assessed in two mouse models of NAFLD-HCC: diethylnitrosamine + a high-fat/high-cholesterol diet or + a choline-deficient/high-fat diet. Germ-free mice were used for the metabolic study of B. pseudolongum. Stool, portal vein and liver tissues were collected from mice for non-targeted and targeted metabolomic profiles. Two human NAFLD-HCC cell lines (HKCI2 and HKCI10) were co-cultured with B. pseudolongum-conditioned media (B.p CM) or candidate metabolites. RESULTS: B. pseudolongum was the top depleted bacterium in mice with NAFLD-HCC. Oral gavage of B. pseudolongum significantly suppressed NAFLD-HCC formation in two mouse models (p < 0.01). Incubation of NAFLD-HCC cells with B.p CM significantly suppressed cell proliferation, inhibited the G1/S phase transition and induced apoptosis. Acetate was identified as the critical metabolite generated from B. pseudolongum in B.p CM, an observation that was confirmed in germ-free mice. Acetate inhibited cell proliferation and induced cell apoptosis in NAFLD-HCC cell lines and suppressed NAFLD-HCC tumor formation in vivo. B. pseudolongum restored heathy gut microbiome composition and improved gut barrier function. Mechanistically, B. pseudolongum-generated acetate reached the liver via the portal vein and bound to GPR43 (G coupled-protein receptor 43) on hepatocytes. GPR43 activation suppressed the IL-6/JAK1/STAT3 signaling pathway, thereby preventing NAFLD-HCC progression. CONCLUSIONS: B. pseudolongum protected against NAFLD-HCC by secreting the anti-tumor metabolite acetate, which reached the liver via the portal vein. B. pseudolongum holds potential as a probiotic for the prevention of NAFLD-HCC. IMPACT AND IMPLICATIONS: Non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC) is an increasing healthcare burden worldwide. There is an urgent need to develop effective agents to prevent NAFLD-HCC progression. Herein, we show that the probiotic Bifidobacterium pseudolongum significantly suppressed NAFLD-HCC progression by secreting acetate, which bound to hepatic GPR43 (G coupled-protein receptor 43) via the gut-liver axis and suppressed the oncogenic IL-6/JAK1/STAT3 signaling pathway. Bifidobacterium pseudolongum holds potential as a novel probiotic for NAFLD-HCC prevention.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/prevention & control , Carcinoma, Hepatocellular/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Interleukin-6/metabolism , Liver/pathology , Liver Neoplasms/etiology , Liver Neoplasms/prevention & control , Liver Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Acetates , Microbiota
7.
Gut ; 72(11): 2112-2122, 2023 11.
Article in English | MEDLINE | ID: mdl-37491158

ABSTRACT

OBJECTIVE: Roseburia intestinalis is a probiotic species that can suppress intestinal inflammation by producing metabolites. We aimed to study the role of R. intestinalis in colorectal tumourigenesis and immunotherapy. DESIGN: R. intestinalis abundance was evaluated in stools of patients with colorectal cancer (CRC) (n=444) and healthy controls (n=575). The effects of R. intestinalis were studied in ApcMin/+ or azoxymethane (AOM)-induced CRC mouse models, and in syngeneic mouse xenograft models of CT26 (microsatellite instability (MSI)-low) or MC38 (MSI-high). The change of immune landscape was evaluated by multicolour flow cytometry and immunohistochemistry staining. Metabolites were profiled by metabolomic profiling. RESULTS: R. intestinalis was significantly depleted in stools of patients with CRC compared with healthy controls. R. intestinalis administration significantly inhibited tumour formation in ApcMin/+ mice, which was confirmed in mice with AOM-induced CRC. R. intestinalis restored gut barrier function as indicated by improved intestinal permeability and enhanced expression of tight junction proteins. Butyrate was identified as the functional metabolite generated by R. intestinalis. R. intestinalis or butyrate suppressed tumour growth by inducing cytotoxic granzyme B+, interferon (IFN)-γ+ and tumour necrosis factor (TNF)-α+ CD8+ T cells in orthotopic mouse models of MC38 or CT26. R. intestinalis or butyrate also significantly improved antiprogrammed cell death protein 1 (anti-PD-1) efficacy in mice bearing MSI-low CT26 tumours. Mechanistically, butyrate directly bound to toll-like receptor 5 (TLR5) receptor on CD8+ T cells to induce its activity through activating nuclear factor kappa B (NF-κB) signalling. CONCLUSION: R. intestinalis protects against colorectal tumourigenesis by producing butyrate, which could also improve anti-PD-1 efficacy by inducing functional CD8+ T cells. R. intestinalis is a potential adjuvant to augment anti-PD-1 efficacy against CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Humans , Mice , Animals , Butyrates/pharmacology , Carcinogenesis , Cell Transformation, Neoplastic , Colorectal Neoplasms/metabolism
8.
Microbiol Res ; 268: 127294, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36592577

ABSTRACT

Biological process is an effective strategy to improve soil quality in agroecosystems. Sweetpotato has long been cultivated in barren rocky soil (BRS) to improve soil fertility and obtain considerably high yield. However, how sweetpotato cultivation affects soil quality is still unclear. We cultured sweetpotato in virgin BRS, and investigated its transcriptome, rhizospheric microbial community and soil properties. A high sweetpotato yield (22.69 t.ha-1) was obtained through upregulating the expression of genes associated with stress resistance, nitrogen/phosphorus/potassium (N/P/K) uptake, and root exudates transport. Meanwhile, the rhizospheric microbial diversity in BRS increased, and the rhizospheric microbial community structure became more similar to that of fertile soil, which might benefit from the increased root exudates. Notably, the relative abundances of N-fixing and P/K-solubilizing microbes increased, and the copy number of nifH increased 6.67 times. Moreover, the activities of acid, neutral, and alkaline phosphatases increased strongly from 0.63, 0.02, and 1.15-1.58, 0.31, and 2.11 mg phenol·g-1·d-1, respectively, and total carbon, dissolved organic carbon, available N/P content also increased, while bulk density and pH of BRS decreased, indicating the enhanced soil fertility. Our study found sweetpotato cultivation improved BRS quality through shaping microbial communities, which has important guiding significance for sustainable agriculture.


Subject(s)
Ipomoea batatas , Microbiota , Soil/chemistry , Agriculture , Plants , Soil Microbiology
9.
Gut ; 72(8): 1497-1509, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36717220

ABSTRACT

OBJECTIVE: The role of N6-methyladenosine (m6A) in tumour immune microenvironment (TIME) remains understudied. Here, we elucidate function and mechanism of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in colorectal cancer (CRC) TIME. DESIGN: Clinical significance of YTHDF1 was assessed in tissue microarrays (N=408) and TCGA (N=526) cohorts. YTHDF1 function was determined in syngeneic tumours, intestine-specific Ythdf1 knockin mice, and humanised mice. Single-cell RNA-seq (scRNA-seq) was employed to profile TIME. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) were used to identify YTHDF1 direct targets. Vesicle-like nanoparticles (VNPs)-encapsulated YTHDF1-siRNA was used for YTHDF1 silencing in vivo. RESULTS: YTHDF1 expression negatively correlated with interferon-γ gene signature in TCGA-CRC. Concordantly, YTHDF1 protein negatively correlated with CD8+ T-cell infiltration in independent tissue microarrays cohorts, implying its role in TIME. Genetic depletion of Ythdf1 augmented antitumour immunity in CT26 (MSS-CRC) and MC38 (MSI-H-CRC) syngeneic tumours, while Ythdf1 knockin promoted an immunosuppressive TIME facilitating CRC in azoxymethane-dextran sulphate-sodium or ApcMin/+ models. scRNA-seq identified reduction of myeloid-derived suppressor cells (MDSCs), concomitant with increased cytotoxic T cells in Ythdf1 knockout tumours. Integrated MeRIP-seq, RNA-seq and Ribo-seq revealed p65/Rela as a YTHDF1 target. YTHDF1 promoted p65 translation to upregulate CXCL1, which increased MDSC migration via CXCL1-CXCR2 axis. Increased MSDCs in turn antagonised functional CD8+ T cells in TIME. Importantly, targeting YTHDF1 by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) or VNPs-siYTHDF1 boosted anti-PD1 efficacy in MSI-H CRC, and overcame anti-PD1 resistance in MSS CRC. CONCLUSION: YTHDF1 impairs antitumour immunity via an m6A-p65-CXCL1/CXCR2 axis to promote CRC and serves as a therapeutic target in immune checkpoint blockade therapy.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Mice , Animals , CD8-Positive T-Lymphocytes , Colonic Neoplasms/pathology , Colorectal Neoplasms/pathology , Tumor Microenvironment
10.
Article in English | MEDLINE | ID: mdl-36174929

ABSTRACT

The high host genetic background of tissue biopsies hinders the application of shotgun metagenomic sequencing in characterizing the tissue microbiota. We proposed an optimized method that removed host DNA from colon biopsies and examined the effect on metagenomic analysis. Human or mouse colon biopsies were divided into two groups, with one group undergoing host DNA depletion and the other serving as the control. Host DNAs were removed through differential lysis of mammalian and bacterial cells before sequencing. The impact of host DNA depletion on microbiota was compared based on phylogenetic diversity analyses and regression analyses. Removing host DNA enhanced bacterial sequencing depth and improved species discovery, increasing bacterial reads by 2.46 ± 0.20 fold while reducing host reads by 6.80% ± 1.06%. Moreover, 3.40 times more of bacterial species were detected after host DNA depletion. This was confirmed from mouse colon tissues, increasing bacterial reads by 5.46 ± 0.42 fold while decreasing host reads by 10.2% ± 0.83%. Similarly, significantly more species were detected in the mouse colon tissue upon host DNA depletion (P < 0.001). Furthermore, an increased microbial richness was evident in the host DNA-depleted samples compared with non-depleted controls in human colon biopsies and mouse colon tissues (P < 0.001). Our optimized method of host DNA depletion improved the sensitivity of shotgun metagenomic sequencing in bacterial detection in the biopsy, which may yield a more accurate taxonomic profile of the tissue microbiota and identify bacteria that are important for disease initiation or progression.

11.
Oncogene ; 41(28): 3599-3610, 2022 07.
Article in English | MEDLINE | ID: mdl-35680985

ABSTRACT

The consistency of the associations between gastric mucosal microbiome and gastric cancer across studies remained unexamined. We aimed to identify universal microbial signatures in gastric carcinogenesis through a meta-analysis of gastric microbiome from multiple studies. Compositional and ecological profiles of gastric microbes across stages of gastric carcinogenesis were significantly altered. Meta-analysis revealed that opportunistic pathobionts Fusobacterium, Parvimonas, Veillonella, Prevotella and Peptostreptococcus were enriched in GC, while commensals Bifidobacterium, Bacillus and Blautia were depleted in comparison to SG. The co-occurring correlation strengths of GC-enriched bacteria were increased along disease progression while those of GC-depleted bacteria were decreased. Eight bacterial taxa, including Veillonella, Dialister, Granulicatella, Herbaspirillum, Comamonas, Chryseobacterium, Shewanella and Helicobacter, were newly identified by this study as universal biomarkers for robustly discriminating GC from SG, with an area under the curve (AUC) of 0.85. Moreover, H. pylori-positive samples exhibited reduced microbial diversity, altered microbiota community and weaker interactions among gastric microbes. Our meta-analysis demonstrated comprehensive and generalizable gastric mucosa microbial features associated with histological stages of gastric carcinogenesis, including GC associated bacteria, diagnostic biomarkers, bacterial network alteration and H. pylori influence.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Microbiota , Stomach Neoplasms , Carcinogenesis/pathology , Dysbiosis/microbiology , Gastric Mucosa/pathology , Helicobacter Infections/complications , Humans , Stomach/pathology , Stomach Neoplasms/pathology
12.
Gastroenterology ; 163(3): 699-711, 2022 09.
Article in English | MEDLINE | ID: mdl-35679948

ABSTRACT

BACKGROUND & AIMS: Lack of viral reference genomes poses a challenge to virome study. We investigated human gut virome and its clinical implication by ultra-deep metagenomic sequencing. METHODS: We extracted sufficient viral DNA from human feces for ultra-deep PacBio sequencing (>10 µg) and Illumina sequencing (>1 µg). Upon de novo assembly and 6 stages of strict filtering, viral genomes were generated and validated in 3 cohorts of 2819 published fecal metagenomes. Diagnostic performance of assembled viruses for colorectal cancer were tested in a training cohort and 2 independent validation cohorts. Virus mapping ratio, evolutionary history, and virus status (lytic or temperate) were also examined. RESULTS: The mean amount of extracted viral DNA increased by 14-fold compared with previous protocols. We obtained PacBio long reads and Illumina short reads with 290-fold higher depth than previous studies. We assembled and validated 1178 contigs as complete viral genomes, of which 1058 were newly identified. Thirteen viral genomes (398-839 kb) that are longer than the largest bacteriophage found in humans (393 kb) were discovered. Phylogenetic tree was constructed based on Hidden Markov Models alignment scores of 4 conserved viral proteins. Incorporating our assembled genomes into the National Center for Biotechnology Information database improved the mapping ratio of published metagenomes ≤18 times. Lytic viruses (75.9% ± 12.2% of total) were predominantly present in our sample. A biomarker panel of 14 novel viruses could discriminate patients with colorectal cancer from controls with an area under the receiver operating characteristics curve of 0.87 in the training cohort, which was validated with areas under the receiver operating characteristics curve of 0.85 and 0.73 in 2 independent cohorts. CONCLUSIONS: We uncovered 1058 novel human gut viruses. These findings can contribute to clinical diagnosis, current viral reference genome, and future virome investigation.


Subject(s)
High-Throughput Nucleotide Sequencing , Viruses , Colorectal Neoplasms/genetics , DNA Viruses/genetics , DNA, Viral/genetics , Humans , Metagenome , Metagenomics/methods , Phylogeny , Viruses/genetics
13.
Front Microbiol ; 12: 761972, 2021.
Article in English | MEDLINE | ID: mdl-34956124

ABSTRACT

Phosphate-solubilizing bacteria (PSB) can alleviate available phosphorus (AP)-deficiency without causing environmental pollution like chemical phosphate fertilizers. However, the research and application of PSB on the barren rocky soil is very rare. We screened six PSB from sweetpotato rhizosphere rocky soil. Among them, Ochrobactrum haematophilum FP12 showed the highest P-solubilizing ability of 1,085.00 mg/L at 7 days, which was higher than that of the most reported PSB. The assembled genome of PSB FP12 was 4.92 Mb with P-solubilizing and plant growth-promoting genes. In an AP-deficient environment, according to transcriptome and metabolomics analysis, PSB FP12 upregulated genes involved in gluconic acid synthesis and the tricarboxylic acid cycle, and increased the concentration of gluconic acid and malic acid, which would result in the enhanced P-solubilizing ability. Moreover, a series of experiments in the laboratory and field confirmed the efficient role of the screened PSB on significantly increasing AP in the barren rocky soil and promoting sweetpotato yield. So, in this study, we screened highly efficient PSB, especially suitable for the barren rocky soil, and explored the P-solubilizing mechanism. The research will reduce the demand for chemical phosphate fertilizers and promote the environment-friendly agricultural development.

14.
Front Microbiol ; 11: 678, 2020.
Article in English | MEDLINE | ID: mdl-32351491

ABSTRACT

Sweetpotato can be cultivated in the reclaimed rocky soil in Sichuan Basin, China, which benefits from the release of mineral nutrients in the rocky soil by microorganisms. Shortage of nitrogen (N) in the rocky soil limits sweetpotato yield, which can be compensated through N fertilization. Whereas high N fertilization inhibits biological N fixation and induces unintended environmental consequences. However, the effect of low N fertilization on microorganism community and sweetpotato yield in the N-deficient rocky soil is still unclear. We added a low level of 1.5 g urea/m2 to a rocky soil cultivated with sweetpotato, and measured rocky soil physiological and biochemical properties, rhizosphere microbial diversity, sweetpotato physiological properties and transcriptome. When cultivating sweetpotato in the rocky soil, low N fertilization (1.5 g urea/m2) not only improved total N (TN) and available N (AN) in the rocky soil, but also increased available phosphorus (AP), available potassium (AK), and nitrogenase and urease activity. Interestingly, although low N fertilization could reduce bacterial diversity through affecting sweetpotato root exudates and rocky soil properties, the relative abundance of P and K-solubilizing bacteria, N-fixing and urease-producing bacteria increased under low N fertilization, and the relative abundance of plant pathogens decreased. Furthermore, low N fertilization increased the phytohormones, such as zeatin riboside, abscisic acid, and methyl jasmonate contents in sweetpotato root. Those increases were consistent with our transcriptome findings: the inhibition of the lignin synthesis, the promotion of the starch synthesis, and the upregulated expression of Expansin, thus resulting in promoting the formation of tuberous roots and further increasing the sweetpotato yield by half, up to 3.3 kg/m2. This study indicated that low N fertilization in the N-deficient rocky soil improved this soil quality through affecting microorganism community, and further increased sweetpotato yield under regulation of phytohormones pathway.

15.
Aquat Toxicol ; 190: 87-93, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28697459

ABSTRACT

Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co2+ and Ni2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co2+ and Ni2+ (≤0.5mgL-1) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL-1), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co2+ and Ni2+. In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co2+ and Ni2+ contents (2012.9±18.8 and 1997.7±29.2mgkg-1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co2+- and Ni2+-polluted water and high-quality biomass production.


Subject(s)
Antioxidants/metabolism , Araceae/growth & development , Cobalt/analysis , Nickel/analysis , Photosynthesis/drug effects , Starch/metabolism , Water Pollutants, Chemical/analysis , Araceae/drug effects , Araceae/metabolism , Biodegradation, Environmental , Biomass , Carbohydrate Metabolism/drug effects , Chlorophyll/metabolism , Cobalt/metabolism , Cobalt/pharmacology , Nickel/metabolism , Nickel/pharmacology , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/pharmacology , alpha-Amylases/metabolism
16.
PeerJ ; 5: e4186, 2017.
Article in English | MEDLINE | ID: mdl-29302399

ABSTRACT

BACKGROUND: Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. METHODS: DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. RESULTS: Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia. DISCUSSION: This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds.

17.
Sci Total Environ ; 458-460: 63-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23644280

ABSTRACT

Recent studies have demonstrated the persistence of antibiotics in soil, especially in areas of vegetable cultivation. However, there are very few studies of the influence of planting regimes on the levels of antibiotic pollution. This work introduces geographical-detector models to investigate the relationship between planting patterns (vegetable planting model, manure type and quantity, planting age, greenhouse area, and topographic elevation) and residual fluoroquinolones (FQs) in soil in a pilot project in Shouguang County, Shandong Province (the largest vegetable-producing area in China). The results led to the following findings. 1. The vegetable planting model is the major determinant of the spatial stratification of FQ in the soil. For example, the "cucumber-cucumber" model (growing cucumbers after cucumbers) has a three-fold power of determinant compared to the "pepper-melon" model (growing melons after peppers). 2. Planting age (years with continuous vegetable cultivation) does not necessarily affect the spatial distribution of FQ owing to their relatively short degradation period. 3. Interactions between risk factors were more significant than the individual factors for FQ pollution. In particular, the interaction between the vegetable planting model and amount of manure resulted in the highest pollution level. The findings of the present study make it possible to introduce effective and practical measures to alleviate pollution of soils by FQ in the study area. Adjustment of the vegetable cultivation models and application of chicken manure (less than 6 kg/m(2) manure annually with a more dry than fresh manure) could be an effective and flexible approach to alleviate FQ pollution.


Subject(s)
Agriculture/methods , Anti-Bacterial Agents/analysis , Environmental Pollution/analysis , Fluoroquinolones/analysis , Models, Theoretical , China , Chromatography, Liquid , Crops, Agricultural/growth & development , Fluorescence , Geography , Manure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...