Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1261178, 2023.
Article in English | MEDLINE | ID: mdl-37790258

ABSTRACT

Nickel serves as an essential micronutrient for the human body, playing a vital role in various enzymatic processes. However, excessive nickel entering the environment can cause pollution and pose serious risks to animals, plants, and human health. High concentrations of nickel ions in the human body increase the risk of various diseases, highlighting the need for accurate measurement of nickel ions levels. In this study, we designed a sequence-specific cleavage probe for nickel (II) ion called SSC-Ni. Similar to the TaqMan probe, SSC-Ni is an off-on fluorescent probe with an exceptionally low background fluorescence signal. It exhibits high detection specificity, making it highly selective for nickel ions, and the detection limit of the probe towards Ni2+ is as low as 82 nM. The SSC-Ni probe can be utilized for convenient and cost-effective high-throughput quantitative detection of nickel ions in serum. Its user-friendly operation and affordability make it a practical solution. By addressing the lack of simple and effective nickel ion detection methods, this probe has the potential to contribute significantly to environmental monitoring and the protection of human health.

2.
Appl Microbiol Biotechnol ; 105(11): 4609-4620, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34043081

ABSTRACT

Escherichia coli represents one of the most widely used hosts for recombinant protein production, but its limited capacity for producing extracellular proteins is often cited as a drawback. NJ7G_0991 is an extracellular protein of the haloarchaeon Natrinema sp. J7-2 and comprises a signal peptide, a putative LolA-like domain, and a C-terminal domain of unknown function. Here, we found that the full-length (0991) and the C-terminal domain-deletion variant (0991ΔC) of NJ7G_0991, but not its signal peptide-deletion variant (0991ΔS), were efficiently released into the culture supernatant of E. coli without extensive cell lysis as determined by ß-galactosidase activity assay. After lysozyme treatment, E. coli cells producing 0991 or 0991ΔC, but not 0991ΔS, were converted from rod-shaped forms to spheres, suggesting that the secretion of 0991 or 0991ΔC into the periplasm leads to an increase of outer membrane permeability of E. coli. A pelB signal peptide was fused to the N-terminus of the LolA-like domain, and the resulting variant PelB-0991ΔC could be released into the culture supernatant of E. coli more efficiently than 0991ΔC. By using PelB-0991ΔC as a co-expression partner, the extracellular production level of a recombinant thermostable subtilase WF146 could be enhanced by up to 14-fold, and the extracellular concentration of an active site variant of WF146 (WF146-SA) reached up to 129 mg/l. To the best of our knowledge, this is the first report on archaeal protein-based co-expression system for extracellular production of recombinant proteins in E. coli. KEY POINTS: • The haloarchaeal protein NJ7G_0991 can be efficiently released into the culture supernatant of E. coli. • The recombinant NJ7G_0991 increases the outer membrane permeability of E. coli. • The LolA-like domain of NJ7G_0991 can be used as a co-expression partner to improve extracellular production of recombinant proteins in E. coli.


Subject(s)
Escherichia coli Proteins , Periplasmic Binding Proteins , Cell Membrane Permeability , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Periplasm/metabolism , Protein Sorting Signals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Front Microbiol ; 11: 605771, 2020.
Article in English | MEDLINE | ID: mdl-33408708

ABSTRACT

Here, the gene encoding a subtilisin-like protease (protease Als) was cloned from Thermoactinomyces vulgaris strain CDF and expressed in Escherichia coli. The recombinant enzyme was released into the culture medium of E. coli as a mature form (mAls). Purified mAls displayed optimal activity at 60-70°C and pH 10.0 using azo-casein as the substrate, and showed a half-life of 13.8 h at 70°C. Moreover, the activity of thermostable mAls was comparable to or higher than those of mesophilic subtilisin Carlsberg and proteinase K at low temperatures (10-30°C). Protease Als was also stable in several organic solvents and showed high compatibility with commercial laundry detergents. Notably, mAls exhibited approximately 100% of its activity at 3 M NaCl, and showed enhanced thermostability with the increase of NaCl concentration up to 3 M. Protease Als possesses an excess of solvent-accessible acidic amino acid residues, which may account for the high halotolerance of the enzyme. Compared with homologous protease C2 from the same strain, protease Als exhibits substantially lower activity toward insoluble keratin substrates but efficiently hydrolyzes soluble keratin released from chicken feathers. Additionally, direct substitution of the substrate-binding site of protease Als with that of protease C2 improves its activity against insoluble keratin substrates. By virtue of its polyextremotolerant attribute and kerationolytic capacity, protease Als may find broad applications in various industries such as laundry detergents, food processing, non-aqueous biocatalysis, and feather processing.

4.
Cell Mol Immunol ; 17(7): 741-752, 2020 07.
Article in English | MEDLINE | ID: mdl-31388100

ABSTRACT

Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to the induction of downstream antiviral effectors and the innate antiviral immune response. Here, we identified the zinc-finger FYVE domain-containing protein ZFYVE1, a guanylate-binding protein (GBP), as a positive regulator of TLR3-mediated signaling. Overexpression of ZFYVE1 promoted the transcription of downstream antiviral genes upon stimulation with the synthetic TLR3 ligand poly(I:C). Conversely, ZFYVE1 deficiency had the opposite effect. Zfyve1-/- mice were less susceptible than wild-type mice to inflammatory death induced by poly(I:C) but not LPS. ZFYVE1 was associated with TLR3, and the FYVE domain of ZFYVE1 and the ectodomain of TLR3 were shown to be responsible for their interaction. ZFYVE1 was bound to poly(I:C) and increased the binding affinity of TLR3 to poly(I:C). These findings suggest that ZFYVE1 plays an important role in the TLR3-mediated innate immune and inflammatory responses by promoting the ligand binding of TLR3.


Subject(s)
Membrane Proteins/deficiency , Signal Transduction , Toll-Like Receptor 3/metabolism , Zinc Fingers , Animals , Endosomes/drug effects , Endosomes/metabolism , Immunity, Innate/drug effects , Inflammation/pathology , Ligands , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Poly I-C/pharmacology , Protein Binding/drug effects , Signal Transduction/drug effects
5.
Microbiol Resour Announc ; 8(28)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31296681

ABSTRACT

Thermoactinomyces vulgaris strain CDF was isolated from soil and shown to have the ability to degrade chicken feathers at high temperatures. Here, we report the complete genome sequence of this bacterium, which is 2,595,509 bp long with 2,642 predicted genes and an average G+C content of 48.14%.

SELECTION OF CITATIONS
SEARCH DETAIL
...