Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Bull (Beijing) ; 67(20): 2036-2039, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36546099

Subject(s)
Meteoroids , Moon , Earth, Planet
2.
Sensors (Basel) ; 22(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35808350

ABSTRACT

In recent years, ozone pollution has been increasing in some parts of the world. In this study, we used the Beijing-Tianjin-Tangshan (BJ-TJ-TS) urban agglomeration region as a case study and used satellite remotely sensed inversion data and hourly ground monitoring observations of surface ozone concentrations, meteorological data, and other factors from 2016 to 2019 to explore the spatiotemporal dynamic characteristics of surface ozone concentration and its pollution levels. We also investigated their coupling relationships with meteorological factors, including temperature, pressure, relative humidity, wind velocity, and sunshine duration, in order to support the development of effective control measures for regional ozone pollution. The results revealed that the surface ozone concentration throughout the BJ-TJ-TS region from 2016 to 2019 exhibited an overall pattern of high values in the northwest and low values in the southeast, as well as an obvious difference between built-up and non-built-up areas (especially in Beijing). Meanwhile, a notable increasing trend of ozone levels was discovered in the BJ and TJ areas from 2016 to 2019, whereas this upward trend was not evident in the TS area. In all three areas, the highest monthly average ozone values occurred in the summer month of June, while the lowest monthly average levels occurred in the winter month of December. Their diurnal variation values reached a maximum value at approximately 3:00-4:00 p.m. and a minimum value at approximately 7:00 a.m. It is clear that high temperature, long sunshine duration, low atmospheric pressure, and weak wind velocity conditions, as well as certain relative humidity levels, readily led to high-concentration ozone pollution. Meanwhile, the daily average values of the five meteorological factors on days with Grade I and Grade II ozone pollution displayed different characteristics.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Environmental Monitoring/methods , Meteorological Concepts , Ozone/analysis , Particulate Matter , Seasons
3.
Sensors (Basel) ; 21(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34770503

ABSTRACT

The Moon provides a long-term, stable, and unique location for Earth observation. Several space agencies, such as NASA, ESA, and CNSA, have conducted lunar explorations. To build a Moon-based observation station, site selection is the first step. The time coverage of Earth observation, e.g., the whole Earth disc observation or Earth-related plasmasphere and magnetosphere, the duration of sunlight coverage, and topography (i.e., slope) are the three major factors influencing site selection, especially in the Moon's south pole region. In this study, we used the Chang'E digital elevation model (DEM) together with Earth, Moon, and Sun positions deduced from JPL ephemeris for site selection. Two craters, Faustini and Shoemaker, were chosen for the fuzzy evaluation of these three factors based on a multiple-input single-output (MISO) model during a 19-year period. The results show that the edge regions of craters and small hills, potholes, or uplifts inside craters are unsuitable for a Moon-based observation station. The south pole area, including these two craters, has relatively low time coverage of sunlight and some unevenly distributed, permanent shadow areas. This indicates a low thermal environment for radiation protection, whereas the relatively flat topography and the ability to cover a field of view several times the Earth's radius enable observations of the plasmasphere and magnetosphere.

4.
Sensors (Basel) ; 21(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062917

ABSTRACT

Accurate and up-to-date road network information is very important for the Geographic Information System (GIS) database, traffic management and planning, automatic vehicle navigation, emergency response and urban pollution sources investigation. In this paper, we use vector field learning to extract roads from high resolution remote sensing imaging. This method is usually used for skeleton extraction in nature image, but seldom used in road extraction. In order to improve the accuracy of road extraction, three vector fields are constructed and combined respectively with the normal road mask learning by a two-task network. The results show that all the vector fields are able to significantly improve the accuracy of road extraction, no matter the field is constructed in the road area or completely outside the road. The highest F1 score is 0.7618, increased by 0.053 compared with using only mask learning.

5.
Sensors (Basel) ; 20(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764226

ABSTRACT

Spatially location and working status of pollution sources are very important pieces of information for environment protection. Waste gas produced by fossil fuel consumption in the industry is mainly discharged to the atmosphere through a chimney. Therefore, detecting the distribution of chimneys and their working status is of great significance to urban environment monitoring and environmental governance. In this paper, we use an open access dataset BUAA-FFPP60 and the faster regions with convolutional neural network (Faster R-CNN) algorithm to train the preliminarily detection model. Then, the trained model is used to detect the chimneys in three high-resolution remote sensing images of Google Maps, which is located in Tangshan city. The results show that a large number of false positive targets are detected. For working chimney detection, the recall rate is 77.27%, but the precision is only 40.47%. Therefore, two spatial analysis methods, the digital terrain model (DTM) filtering, and main direction test are introduced to remove the false chimneys. The DTM is generated by ZiYuan-3 satellite images and then registered to the high-resolution image. We set an elevation threshold to filter the false positive targets. After DTM filtering, we use principle component analysis (PCA) to calculate the main direction of each target image slice, and then use the main direction to remove false positive targets further. The results show that by using the combination of DTM filtering and main direction test, more than 95% false chimneys can be removed and, therefore, the detection precision is significantly increased.

SELECTION OF CITATIONS
SEARCH DETAIL
...