Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 645: 676-684, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37167916

ABSTRACT

Formic acid (FA), a high-value product of CO2 hydrogenation and biomass conversion, is considered a promising liquid organic hydrogen carrier for its high hydrogen content, easy accessibility, and relative stability. The development of an efficient heterogeneous catalyst toward FA dehydrogenation and Cr(VI) reduction by FA is needed to boost its sluggish kinetics but still remains a challenge. Herein, uniformly dispersed subnanometric PdAu alloy clusters (i.e., 0.9 nm) were successfully prepared and confined by amine-functionalized carbon bowls (ACB). By virtue of the tiny size and abundant active sites of PdAu clusters, the promotional effect of surface amine groups, and electronic interaction between subnanometric PdAu clusters and support, this as-prepared PdAu/ACB catalyst exhibits superior catalytic property for additive-free FA dehydrogenation (turnover frequency, 10597 h-1 at 323 K) and Cr(VI) reduction (rate constant, 0.47 min-1 at 298 K) under mild conditions, higher than most of the catalysts reported so far. This study offers insight into the design of efficient and durable catalysts for various catalytic applications in energy and environment.

2.
J Colloid Interface Sci ; 630(Pt A): 879-887, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36306599

ABSTRACT

Formic acid (FA), one of the products of biomass conversion and CO2 reduction, has attracted much attention as a renewable liquid hydrogen carrier with a high hydrogen content (4.4 wt%). Searching for efficient catalysts to realize hydrogen evolution from FA are highly desired but challenging. Herein, ultrafine and mono-dispersed Pd-Cr(OH)3 nanoparticles (1.3 nm) loaded on amine-functionalized mesoporous silica (AFMS) have been prepared and applied as an effective catalyst for rapid hydrogen production from additive-free FA. The as-synthesized Pd-Cr(OH)3/AFMS catalysts exhibited efficient catalytic activity and 100% hydrogen selectivity and conversion toward FA dehydrogenation reaction without additives, giving an initial TOF value of 3112 h-1 at 323 K, which is comparable to most of the highly efficient heterogeneous catalysts reported so far under similar reaction conditions. This work provides a feasible idea for the design metal hydroxide-modified Pd-based efficient heterogeneous catalyst, which is expected to enhance the application of FA in fuel cells.


Subject(s)
Metal Nanoparticles , Palladium , Silicon Dioxide , Amines , Hydrogen , Hydroxides
SELECTION OF CITATIONS
SEARCH DETAIL
...