Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496657

ABSTRACT

Recent biotechnological developments in cryo-electron tomography allow direct visualization of native sub-cellular structures with unprecedented details and provide essential information on protein functions/dysfunctions. Denoising can enhance the visualization of protein structures and distributions. Automatic annotation via data simulation can ameliorate the time-consuming manual labeling of large-scale datasets. Here, we combine the two major cryo-ET tasks together in DUAL, by a specific cyclic generative adversarial network with novel noise disentanglement. This enables end-to-end unsupervised learning that requires no labeled data for training. The denoising branch outperforms existing works and substantially improves downstream particle picking accuracy on benchmark datasets. The simulation branch provides learning-based cryo-ET simulation for the first time and generates synthetic tomograms indistinguishable from experimental ones. Through comprehensive evaluations, we showcase the effectiveness of DUAL in detecting macromolecular complexes across a wide range of molecular weights in experimental datasets. The versatility of DUAL is expected to empower cryo-ET researchers by improving visual interpretability, enhancing structural detection accuracy, expediting annotation processes, facilitating cross-domain model adaptability, and compensating for missing wedge artifacts. Our work represents a significant advancement in the unsupervised mining of protein structures in cryo-ET, offering a multifaceted tool that facilitates cryo-ET research.

2.
Water Res ; 253: 121267, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38350192

ABSTRACT

Water/wastewater ((waste)water) disinfection, as a critical process during drinking water or wastewater treatment, can simultaneously inactivate pathogens and remove emerging organic contaminants. Due to fluctuations of (waste)water quantity and quality during the disinfection process, conventional disinfection models cannot handle intricate nonlinear situations and provide immediate responses. Artificial intelligence (AI) techniques, which can capture complex variations and accurately predict/adjust outputs on time, exhibit excellent performance for (waste)water disinfection. In this review, AI application data within the disinfection domain were searched and analyzed using CiteSpace. Then, the application of AI in the (waste)water disinfection process was comprehensively reviewed, and in addition to conventional disinfection processes, novel disinfection processes were also examined. Then, the application of AI in disinfection by-products (DBPs) formation control and disinfection residues prediction was discussed, and unregulated DBPs were also examined. Current studies have suggested that among AI techniques, fuzzy logic-based neuro systems exhibit superior control performance in (waste)water disinfection, while single AI technology is insufficient to support their applications in full-scale (waste)water treatment plants. Thus, attention should be paid to the development of hybrid AI technologies, which can give full play to the characteristics of different AI technologies and achieve a more refined effectiveness. This review provides comprehensive information for an in-depth understanding of AI application in (waste)water disinfection and reducing undesirable risks caused by disinfection processes.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Wastewater , Artificial Intelligence , Water Pollutants, Chemical/analysis , Water Purification/methods , Disinfectants/analysis , Halogenation
SELECTION OF CITATIONS
SEARCH DETAIL
...