Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Rep ; 13(1): 107, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596842

ABSTRACT

The research on targeted therapy of hypopharyngeal cancer is very scarce. The discovery of new targeted driver genes will promote the progress of hypopharyngeal cancer therapy to a great extent. In our research, whole-exome sequencing in 10 patients with hypopharyngeal cancer was performed to identify single nucleotide variations (SNVs) and insertions and deletions (INDELs). American College of Medical Genetics and Genomics (ACMG) guidelines were used to evaluate the pathogenicity of the selected variants. 8113 mutation sites in 5326 genes were identified after strict screening. We identified 72 pathogenic mutations in 53 genes according to the ACMG guidelines. Gene Ontology (GO) annotation and KEGG enrichment analysis show the effect of these genes on cancer. Protein-protein interaction (PPI) was analyzed by string online software. The validation results of the ualcan database showed that 22 of the 53 genes may be related to the poor prognosis of patients with hypopharyngeal cancer. RBM20 has the most significant correlation with hypopharyngeal cancer, and it is likely to be the driver gene of hypopharyngeal cancer. In conclusion, we found possible therapeutic targets for hypopharyngeal cancer, especially RBM20 and KMT2C. Our study provides a basis for the pathogenesis and targeted therapy of hypopharyngeal cancer.


Subject(s)
Hypopharyngeal Neoplasms , Humans , Exome Sequencing , Hypopharyngeal Neoplasms/genetics , Early Detection of Cancer , Mutation , Genomics
2.
Cells ; 11(18)2022 09 08.
Article in English | MEDLINE | ID: mdl-36139386

ABSTRACT

Previous studies have shown that tumors under a hypoxic environment can induce an important hypoxia-responsive element, hypoxia-induced factor-1α (HIF-1α), which can increase tumor migration, invasion, and metastatic ability by promoting epithelial-to-mesenchymal transition (EMT) in tumor cells. Currently, with the deeper knowledge of long noncoding RNAs (lncRNAs), more and more functions of lncRNAs have been discovered. HIF-1α can regulate hypoxia-responsive lncRNAs under hypoxic conditions, and changes in the expression level of lncRNAs can regulate the production of EMT transcription factors and signaling pathway transduction, thus promoting EMT progress. In conclusion, this review summarizes the regulation of the EMT process by HIF-1α and lncRNAs and discusses their relationship with tumorigenesis. Since HIF-1α plays an important role in tumor progression, we also summarize the current drugs that inhibit tumor progression by modulating HIF-1α.


Subject(s)
Neoplasms , RNA, Long Noncoding , Gene Expression Regulation, Neoplastic , Humans , Hypoxia , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism
3.
PeerJ ; 10: e13473, 2022.
Article in English | MEDLINE | ID: mdl-35602894

ABSTRACT

Background: The genome map of hepatocellular carcinoma (HCC) is complex. In order to explore whether circulating tumor cell DNA (ctDNA) can be used as the basis for sequencing and use ctDNA to find tumor related biomarkers, we analyzed the mutant genes of ctDNA in patients with liver cancer by sequencing. Methods: We used next-generation targeted sequencing technology to identify mutations in patients with liver cancer. The ctDNA from 10 patients with hepatocellular carcinoma (including eight cases of primary hepatocellular carcinoma and two cases of secondary hepatocellular carcinoma) was sequenced. We used SAMtools to detect and screen single nucleotide polymorphisms (SNPs) and insertion deletion mutations (INDELs) and ANNOVAR to annotate the structure and function of the detected mutations. Screening of pathogenic and possible pathogenic genes was performed using American College of Medical Genetics and Genomics (ACMG) guidelines. GO analysis and KEGG analysis of pathogenic and possible pathogenic genes were performed using the DAVID database, and protein-protein interaction network analysis of pathogenic and possible pathogenic genes was performed using the STRING database. Then, the Kaplan-Meier plotter database, GEPIA database and HPA database were used to analyse the relationship between pathogenic and possible pathogenic genes and patients with liver cancer. Results: Targeted capture and deep sequencing of 560 cancer-related genes in 10 liver cancer ctDNA samples revealed 8,950 single nucleotide variation (SNV) mutations and 70 INDELS. The most commonly mutated gene was PDE4DIP, followed by SYNE1, KMT2C, PKHD1 and FN1. We compared these results to the COSMIC database and determined that ctDNA could be used for sequencing. According to the ACMG guidelines, we identified 54 pathogenic and possible pathogenic mutations in 39 genes in exons and splice regions of 10 HCC patients and performed GO analysis, KEGG analysis, and PPI network analysis. Through further analysis, four genes significantly related to the prognosis of liver cancer were identified. Conclusion: In this study, our findings indicate that ctDNA can be used for sequencing. Our results provide some molecular data for the mapping of genetic variation in Chinese patients with liver cancer, which enriches the understanding of HCC pathogenesis and provides new ideas for the diagnosis and prognosis of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Circulating Tumor DNA , Liver Neoplasms , Humans , Liver Neoplasms/diagnosis , Carcinoma, Hepatocellular/genetics , Circulating Tumor DNA/genetics , Protein Interaction Maps , Gene Regulatory Networks
4.
Vaccines (Basel) ; 10(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335037

ABSTRACT

COVID-19 is still prevalent around the globe. Although some SARS-CoV-2 vaccines have been distributed to the population, the shortcomings of vaccines and the continuous emergence of SARS-CoV-2 mutant virus strains are a cause for concern. Thus, it is vital to continue to improve vaccines and vaccine delivery methods. One option is nasal vaccination, which is more convenient than injections and does not require a syringe. Additionally, stronger mucosal immunity is produced under nasal vaccination. The easy accessibility of the intranasal route is more advantageous than injection in the context of the COVID-19 pandemic. Nanoparticles have been proven to be suitable delivery vehicles and adjuvants, and different NPs have different advantages. The shortcomings of the SARS-CoV-2 vaccine may be compensated by selecting or modifying different nanoparticles. It travels along the digestive tract to the intestine, where it is presented by GALT, tissue-resident immune cells, and gastrointestinal lymph nodes. Nasal nanovaccines are easy to use, safe, multifunctional, and can be distributed quickly, demonstrating strong prospects as a vaccination method for SARS-CoV-2, SARS-CoV-2 variants, or SARS-CoV-n.

5.
Cancers (Basel) ; 15(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36612129

ABSTRACT

Migrasomes are organelles that are similar in structure to pomegranates, up to 3 µm in diameter, and contain small vesicles with a diameter of 50-100 nm. These membranous organelles grow at the intersections or tips of retracting fibers at the back of migrating cells. The process by which cells release migrasomes and their contents outside the cell is called migracytosis. The signal molecules are packaged in the migrasomes and released to the designated location by migrasomes to activate the surrounding cells. Finally, the migrasomes complete the entire process of information transmission. In this sense, migrasomes integrate time, space, and specific chemical information, which are essential for regulating physiological processes such as embryonic development and tumor invasion and migration. In this review, the current research progress of migrasomes, including the discovery of migrasomes and migracytosis, the structure of migrasomes, and the distribution and functions of migrasomes is discussed. The migratory marker protein TSPAN4 is highly expressed in various cancers and is associated with cancer invasion and migration. Therefore, there is still much research space for the pathogenesis of migratory bodies and cancer. This review also makes bold predictions and prospects for the research directions of the combination of migrasomes and clinical applications.

6.
Transl Oncol ; 14(6): 101077, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33774500

ABSTRACT

Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.

7.
J Mol Cell Biol ; 12(3): 216-229, 2020 04 24.
Article in English | MEDLINE | ID: mdl-31408169

ABSTRACT

Heat shock protein 90 (Hsp90) is an abundant molecular chaperone with two isoforms, Hsp90α and Hsp90ß. Hsp90ß deficiency causes embryonic lethality, whereas Hsp90α deficiency causes few abnormities except male sterility. In this paper, we reported that Hsp90α was exclusively expressed in the retina, testis, and brain. Its deficiency caused retinitis pigmentosa (RP), a disease leading to blindness. In Hsp90α-deficient mice, the retina was deteriorated and the outer segment of photoreceptor was deformed. Immunofluorescence staining and electron microscopic analysis revealed disintegrated Golgi and aberrant intersegmental vesicle transportation in Hsp90α-deficient photoreceptors. Proteomic analysis identified microtubule-associated protein 1B (MAP1B) as an Hsp90α-associated protein in photoreceptors. Hspα deficiency increased degradation of MAP1B by inducing its ubiquitination, causing α-tubulin deacetylation and microtubule destabilization. Furthermore, the treatment of wild-type mice with 17-DMAG, an Hsp90 inhibitor of geldanamycin derivative, induced the same retinal degeneration as Hsp90α deficiency. Taken together, the microtubule destabilization could be the underlying reason for Hsp90α deficiency-induced RP.


Subject(s)
Golgi Apparatus/metabolism , HSP90 Heat-Shock Proteins/deficiency , Photoreceptor Cells/metabolism , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Transport Vesicles/metabolism , Animals , Apoptosis/genetics , Biological Transport , Disease Models, Animal , Disease Susceptibility , Gene Expression , Genotype , Golgi Apparatus/ultrastructure , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Mice , Mice, Knockout , Microtubules/metabolism , Photoreceptor Cells/ultrastructure , Retinal Degeneration/pathology
8.
J Mol Cell Biol ; 12(6): 448-461, 2020 07 03.
Article in English | MEDLINE | ID: mdl-31560394

ABSTRACT

Hsp90 is an abundant and special molecular chaperone considered to be the regulator of many transcription factors and signaling kinases. Its high abundance is indicative of its involvement in some more fundamental processes. In this study, we provide evidence that Hsp90 is required for microtubule stabilization, Golgi organization, and vesicular trafficking. We showed that Hsp90 is bound to microtubule-associated protein 4 (MAP4), which is essential for maintaining microtubule acetylation and stabilization. Hsp90 depletion led to the decrease in MAP4, causing microtubule deacetylation and destabilization. Furthermore, in Hsp90-depleted cells, the Golgi apparatus was fragmented and anterograde vesicle trafficking was impaired, with phenotypes similar to those induced by silencing MAP4. These disruptive effects of Hsp90 depletion could be rescued by the expression of exogenous MAP4 or the treatment of trichostatin A that increases microtubule acetylation as well as stability. Thus, microtubule stability is an essential cellular event regulated by Hsp90.


Subject(s)
Golgi Apparatus/metabolism , HSP90 Heat-Shock Proteins/metabolism , Microtubules/metabolism , Transport Vesicles/metabolism , HEK293 Cells , HeLa Cells , Humans , Microtubule-Associated Proteins/metabolism , Phenotype , Protein Binding , Protein Stability , rab GTP-Binding Proteins/metabolism
9.
J Proteome Res ; 11(5): 2851-62, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22404376

ABSTRACT

We developed a quantitative strategy, named secretome-derived isotopic tag (SDIT), to concurrently identify and quantify the adipocyte-secreted plasma proteins from normal and high-fat-diet (HFD) induced obese mice, based on the application of isotope-labeled secreted proteins from cultured mouse adipocytes as internal standards. We detected 197 proteins with significant changes between normal and obese mice plasma. Importantly, a novel adipocyte-secreted plasma protein, apolipoprotein C-I (apoC-I), significantly increased in the obese mice plasma. The expression and secretion of adipocyte apoC-I was detected in differentiated 3T3-L1 and primary rat adipocytes. Our in vitro experiments proved that functional Golgi apparatus was required for apoC-I secretion. Additionally, obese mice had increased apoC-I production in adipose tissue. Population survey of 367 participants showed that the plasma level of apoC-I was significantly increased in obese individuals compared with healthy individuals. After multiple adjustments for age and sex, the odds ratios for risk factors of cardiovascular disease including high LDL cholesterol, hypercholesterolemia, and hypertriglyceridemia, respectively, were used to compare the highest with the lowest apoC-I quartile. Taken together, our studies provide a novel strategy to concurrently identify and quantify tissue-specific secreted proteins. This strategy can be used to identify the largest global characterization of adipocyte-derived plasma proteome and provides a potential disease-related biomarker for clinical diagnoses. By selectively analyzing adipocyte-secreted proteins in plasma from obese vs lean murine and/or human subjects, we discovered that apoC-I is an adipocyte-secreted plasma protein and a predictive marker for cardiovascular disease.


Subject(s)
Adipocytes/metabolism , Apolipoprotein C-I/blood , Cardiovascular Diseases/blood , Isotope Labeling/methods , Proteomics/methods , 3T3-L1 Cells , Adipose Tissue/metabolism , Animals , Biomarkers/blood , Cardiovascular Diseases/pathology , Case-Control Studies , Cholesterol, LDL/metabolism , Diet, High-Fat/adverse effects , Female , Golgi Apparatus/metabolism , Humans , Hypertriglyceridemia/diagnosis , Hypertriglyceridemia/pathology , Mice , Mice, Inbred C57BL , Mice, Obese , Middle Aged , Odds Ratio , Primary Cell Culture , Proteome/analysis , Proteome/metabolism , Rats , Rats, Sprague-Dawley , Risk Factors
10.
Acta Biochim Biophys Sin (Shanghai) ; 44(5): 394-406, 2012 May.
Article in English | MEDLINE | ID: mdl-22343379

ABSTRACT

Lipid droplets in adipocytes serve as the principal long-term energy storage depot of animals. There is increasing recognition that lipid droplets are not merely a static neutral lipid storage site, but in fact dynamic and multi-functional organelles. Structurally, lipid droplet consists of a neutral lipid core surrounded by a phospholipid monolayer and proteins embedded in or bound to the phospholipid layer. Proteins on the surface of lipid droplets are crucial to droplet structure and dynamics. To understand the lipid droplet-associated proteome of primary adipocyte with a large central lipid droplet, lipid droplets of white adipose tissue from C57BL/6 mice were isolated. And the proteins were extracted and analyzed by liquid chromatography coupled with tandem mass spectrometry. A total of 193 proteins including 73 previously unreported proteins were identified. Furthermore, the isotope-coded affinity tags (ICAT) was used to compare the difference of lipid droplet-associated proteomes between the normal lean and the high-fat diet-induced obese C57BL/6 mice. Of 23 proteins quantified by ICAT analysis, 3 proteins were up-regulated and 4 proteins were down-regulated in the lipid droplets of adipose tissue from the obese mice. Importantly, two structural proteins of lipid droplets, perilipin A and vimentin, were greatly reduced in the lipid droplets of the adipose tissue from the obese mice, implicating reduced protein machinery for lipid droplet stability.


Subject(s)
Adipocytes/metabolism , Obesity/metabolism , Proteomics , Adipose Tissue, White/metabolism , Animals , Carrier Proteins/metabolism , Diet, High-Fat , Female , Mice , Mice, Inbred C57BL , Mice, Obese , Organelles/metabolism , Perilipin-1 , Phosphoproteins/metabolism , Vimentin/metabolism
11.
J Cell Sci ; 121(Pt 8): 1334-43, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18388321

ABSTRACT

The regulation of protein tyrosine phosphorylation is an important aspect during the cell cycle. From G2-M transition to mitotic anaphase, phosphorylation of Tyr421, Tyr466 and Tyr482 of cortactin, an actin-filament associated protein, is dramatically induced. The phosphorylated cortactin is almost exclusively associated with centrosomes or spindle poles during mitosis. At G2-M transition prior to the breakdown of the nuclear envelope, two duplicated centrosomes migrate towards opposite ends of the nucleus to form the spindle poles. This centrosome-separation process and also the start of mitosis are inhibited or delayed by the depolymerization of actin filaments. Also inhibited is the separation of centrosomes when a truncated form of cortactin is expressed, whose C-terminus contains the tyrosine phosphorylation region but lacks the actin-binding domains. We introduced mutations at the tyrosine phosphorylation sites in the truncated C-terminus of cortactin and found that the C-terminus could no longer interfere with centrosome separation process. Our study shows that, cortactin phosphorylated at Tyr421, Tyr466 and Tyr482 mediates the actin-filament-driven centrosome separation at G2-M transition by providing a bridge between the centrosome and actin-filaments.


Subject(s)
Actins/physiology , Centrosome , Cortactin/physiology , Mitosis/physiology , Tyrosine/metabolism , 3T3-L1 Cells , Animals , COS Cells , Chlorocebus aethiops , Cortactin/metabolism , HeLa Cells , Humans , Mice , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...