Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Compr Rev Food Sci Food Saf ; 23(3): e13332, 2024 05.
Article in English | MEDLINE | ID: mdl-38578167

ABSTRACT

Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.


Subject(s)
Antioxidants , Euphausiacea , Animals , Nutritional Status , Nutritive Value , Lipids
2.
Talanta ; 127: 163-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24913871

ABSTRACT

In this study, a gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus (S. aureus) using tyramine signal amplification (TSA) technology has been developed. First, the biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of the microtiter plate via biotin-avidin binding. Then, the target bacteria (S. aureus), biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and avidin-catalase were successively introduced into the wells of the microtiter plate. After that, the existing catalase consumed the hydrogen peroxide. Finally, the freshly prepared gold (III) chloride trihydrate was added, the color of the reaction production would be changed and the absorbance at 550 nm could be measured with a plate reader. Under optimized conditions, there was a linear relationship between the absorbance at 550 nm and the concentration of S. aureus over the range from 10 to 10(6) cfu mL(-1) (with an R² of 0.9947). The limit of the developed method was determined to be 9 cfu mL(-1).


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Gold/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus/isolation & purification , Animals , Bacterial Proteins/chemistry , Biotinylation , Catalase/chemistry , Colorimetry , Food Microbiology/methods , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Milk/microbiology , Tyramine/chemistry
3.
Amino Acids ; 39(1): 181-94, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20091071

ABSTRACT

Proteome patterns in peach fruit (Prunus persica L.) stored at different low temperatures were examined in order to gain a better understanding why peach fruit is less prone to chilling injury when stored at 0 degrees C than at 5 degrees C. Some differently expressed proteins in peach fruit stored at 0 and 5 degrees C were identified using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Among these proteins, four membrane stability related proteins, i.e., enolase, temperature-induced lipocalin, major allergen Pru p 1, and type II SK2 dehydrin were enhanced, but three proteins related to phenolic compounds metabolization, cinnamyl-alcohol dehydrogenase 5, cinnamyl-alcohol dehydrogenase 1, and chorismate mutase, were repressed in peach fruit at 0 degrees C as compared to that at 5 degrees C. The abundance of glucose-6-phosphate dehydrogenase, NADP-dependent isocitrate dehydrogenase, and NADP-dependent malic enzyme, which catalyze the reactions during sugar metabolism and energy pathways, was found to decrease in peach fruit stored at 0 degrees C. In addition, our data revealed that low temperature of 0 degrees C might regulate the endogenous H(2)O(2) level, resulting in activating the transcriptional level of genes encoding the proteins related to membrane stability. These results provide a comprehensive knowledge to understand the mechanisms by which peach fruit stored at 0 degrees C showed a higher chilling tolerance than that at 5 degrees C.


Subject(s)
Cell Membrane/chemistry , Fruit/chemistry , Plant Proteins/chemistry , Prunus/chemistry , Cell Membrane/metabolism , Food Preservation , Fruit/metabolism , Plant Proteins/metabolism , Proteomics , Prunus/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...