Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Neuropharmacology ; 255: 110001, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38750804

ABSTRACT

Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.


Subject(s)
Astrocytes , Citrates , Dopamine , Glutamic Acid , Nicotine , Nucleus Accumbens , Rats, Wistar , Self Administration , Animals , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Nicotine/pharmacology , Nicotine/administration & dosage , Male , Glutamic Acid/metabolism , Dopamine/metabolism , Citrates/pharmacology , Citrates/administration & dosage , Rats , Glial Fibrillary Acidic Protein/metabolism , Nicotinic Agonists/pharmacology , Nicotinic Agonists/administration & dosage , Microdialysis , Reinforcement, Psychology , gamma-Aminobutyric Acid/metabolism
2.
Nicotine Tob Res ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38513068

ABSTRACT

INTRODUCTION: Cigarette smoking remains the leading preventable cause of disease and death. Nicotine is the primary reinforcing ingredient in cigarettes sustaining addiction. Cotinine is the major metabolite of nicotine that produces a myriad of neurobehavioral effects. Previous studies showed that cotinine supported self-administration in rats and rats with a history of cotinine self-administration exhibited relapse-like drug-seeking behavior, suggesting that cotinine may also be reinforcing. To date, whether cotinine may contribute to nicotine reinforcement remains unknown. Nicotine metabolism is mainly catalyzed by hepatic CYP2B1/2 enzymes in rats and methoxsalen is a potent CYP2B1/2 inhibitor. METHODS: The study examined nicotine metabolism, self-administration, and locomotor activity. The hypothesis is that methoxsalen inhibits nicotine self-administration and cotinine replacement attenuates the inhibitory effects of methoxsalen in male rats. RESULTS: Methoxsalen decreased plasma cotinine levels following a subcutaneous nicotine injection. Repeated daily methoxsalen treatments reduced the acquisition of nicotine self-administration, leading to fewer nicotine infusions, lower nicotine intake, and lower plasma cotinine levels. However, methoxsalen did not alter the maintenance of nicotine self-administration despite a significant reduction of plasma cotinine levels. Cotinine replacement by mixing cotinine with nicotine for self-administration dose-dependently increased plasma cotinine levels and enhanced the acquisition of self-administration. Neither basal nor nicotine-induced locomotor activity was altered by methoxsalen. CONCLUSIONS: These results indicate that methoxsalen inhibition of cotinine formation impaired the acquisition of nicotine self-administration, and cotinine replacement attenuated the inhibitory effects of methoxsalen on the acquisition of self-administration, suggesting that cotinine may contribute to the initial development of nicotine reinforcement. IMPLICATIONS: Smoking cessation medications targeting nicotine's effects are only moderately effective, making it imperative to better understand the mechanisms of nicotine misuse. Methoxsalen inhibited nicotine metabolism to cotinine and impaired the acquisition of nicotine self-administration. Cotinine replacement restored plasma cotinine and attenuated the methoxsalen inhibition of nicotine self-administration in rats. These results suggest that (1) the inhibition of nicotine metabolism may be a viable strategy in reducing the development of nicotine reinforcement, (2) methoxsalen may be translationally valuable, and (3) cotinine may be a potential pharmacological target for therapeutic development given its important role in the initial development of nicotine reinforcement.

3.
bioRxiv ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37333320

ABSTRACT

Cigarette smoking remains the leading preventable cause of disease and death. Nicotine is the primary reinforcing ingredient in cigarettes sustaining addiction. Cotinine is the major metabolite of nicotine that produces a myriad of neurobehavioral effects. Cotinine supported self-administration and rats with a history of intravenous self-administration of cotinine exhibited relapse-like drug-seeking behavior, suggesting cotinine may also be reinforcing. To date, a potential contribution of cotinine to nicotine reinforcement remains unknown. Nicotine metabolism is mainly catalyzed by hepatic CYP2B1 enzyme in the rat and methoxsalen is a potent CYP2B1 inhibitor. The study tested the hypothesis that methoxsalen inbibits nicotine metabolism and self-administration, and that cotinine replacement attenuates the inhibitory effects of methoxsalen. Acute methoxsalen decreased plasma cotinine levels and increased nicotine levels following subcutaneous nicotine injection. Repeated methoxsalen reduced the acquisition of nicotine self-administration, leading to fewer nicotine infusions, disruption of lever differentiation, smaller total nicotine intake, and lower plasma cotinine levels. On the other hand, methoxsalen did not alter nicotine self-administration during the maintenance phase despite great reduction of plasma cotinine levels. Cotinine replacement by mixing cotinine with nicotine for self-administration dose-dependently increased plasma cotinine levels, counteracted effects of methoxsalen, and enhanced the acquisition of self-administration. Neither basal nor nicotine-induced locomotor activity was altered by methoxsalen. These results indicate that methoxsalen depressed cotinine formation from nicotine and the acquisition of nicotine self-administration, and that replacement of plasma cotinine attenuated the inhibitory effects of methoxsalen, suggesting that cotinine may contribute to the development of nicotine reinforcement.

4.
Drug Alcohol Depend ; 246: 109858, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37028106

ABSTRACT

Cues associated with alcohol use can readily enhance self-reported cravings for alcohol, which increases the likelihood of reusing alcohol. Understanding the neuronal mechanisms involved in alcohol-seeking behavior is important for developing strategies to treat alcohol use disorder. In all experiments, adult female alcohol-preferring (P) rats were exposed to three conditioned odor cues; CS+ associated with EtOH self-administration, CS- associated with the absence of EtOH (extinction training), and a CS0, a neutral stimulus. The data indicated that presentation of an excitatory conditioned cue (CS+) can enhance EtOH- seeking while the CS- can inhibit EtOH-seeking under multiple test conditions. Presentation of the CS+ activates a subpopulation of dopamine neurons within the interfascicular nucleus of the posterior ventral tegmental area (posterior VTA) and basolateral amygdala (BLA). Pharmacological inactivation of the BLA with GABA agonists inhibits the ability of the CS+ to enhance EtOH-seeking but does not alter context-induced EtOH-seeking or the ability of the CS- to inhibit EtOH-seeking. Presentation of the conditioned odor cues in a non-drug-paired environment indicated that presentation of the CS+ increased dopamine levels in the BLA. In contrast, presentation of the CS- decreased both glutamate and dopamine levels in the BLA. Further analysis revealed that presentation of a CS+ EtOH-associated conditioned cue activates GABA interneurons but not glutamate projection neurons. Overall, the data indicate that excitatory and inhibitory conditioned cues can contrarily alter EtOH-seeking behaviors and that different neurocircuitries are mediating these distinct cues in critical brain regions. Pharmacotherapeutics for craving should inhibit the CS+ and enhance the CS- neurocircuits.


Subject(s)
Cues , Neurochemistry , Rats , Female , Animals , Dopamine , Drug-Seeking Behavior/physiology , Ethanol/pharmacology , Self Administration , Conditioning, Operant/physiology , Extinction, Psychological
5.
Neuropharmacology ; 230: 109495, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36914092

ABSTRACT

Previous studies indicated that cotinine, the major metabolite of nicotine, supported intravenous self-administration and exhibited relapse-like drug-seeking behaviors in rats. Subsequent studies started to reveal an important role of the mesolimbic dopamine system in cotinine's effects. Passive administration of cotinine elevated extracellular dopamine levels in the nucleus accumbens (NAC) and the D1 receptor antagonist SCH23390 attenuated cotinine self-administration. The objective of the current study was to further investigate the role of mesolimbic dopamine system in mediating cotinine's effects in male rats. Conventional microdialysis was conducted to examine NAC dopamine changes during active self-administration. Quantitative microdialysis and Western blot were used to determine cotinine-induced neuroadaptations within the NAC. Behavioral pharmacology was performed to investigate potential involvement of D2-like receptors in cotinine self-administration and relapse-like behaviors. NAC extracellular dopamine levels increased during active self-administration of cotinine and nicotine with less robust increase during cotinine self-administration. Repeated subcutaneous injections of cotinine reduced basal extracellular dopamine concentrations without altering dopamine reuptake in the NAC. Chronic self-administration of cotinine led to reduced protein expression of D2 receptors within the core but not shell subregion of the NAC, but did not change either D1 receptors or tyrosine hydroxylase in either subregion. On the other hand, chronic nicotine self-administration had no significant effect on any of these proteins. Systemic administration of eticlopride, a D2-like receptor antagonist attenuated both cotinine self-administration and cue-induced reinstatement of cotinine seeking. These results further support the hypothesis that the mesolimbic dopamine transmission plays a critical role in mediating reinforcing effects of cotinine.


Subject(s)
Dopamine Antagonists , Dopamine , Rats , Male , Animals , Dopamine/metabolism , Dopamine Antagonists/pharmacology , Cotinine/pharmacology , Nicotine/pharmacology , Nicotine/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D1/metabolism , Nucleus Accumbens , Self Administration
6.
Behav Pharmacol ; 33(7): 482-491, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36148836

ABSTRACT

Relapse is a defining feature of smoking and a significant challenge in cessation management. Elucidation of novel factors underlying relapse may inform future treatments. Cotinine, the major metabolite of nicotine, has been shown to support intravenous self-administration in rats, implicating it as one potential factor contributing to nicotine reinforcement. However, it remains unknown whether cotinine would induce relapse-like behaviors. The current study investigated relapse to cotinine seeking in two relapse models, the reinstatement of drug seeking and incubation of drug craving models. In the reinstatement model, rats were trained to self-administer cotinine, underwent extinction of cotinine-associated responses, and were tested for cue-, drug-, or stress-induced reinstatement. Conditioned cues associated with cotinine self-administration, cotinine (1-2 mg/kg), or the pharmacological stressor yohimbine (1.25-2.5 mg/kg) induced reinstatement of cotinine seeking. Female rats displayed more pronounced cue-induced, but not drug- or stress-induced reinstatement than male rats. In the incubation of the craving model, rats were trained to self-administer cotinine and underwent forced withdrawal in home cages. Rats were tested for cue-induced cotinine-seeking on both withdrawal day 1 and withdrawal day 18. Rats exhibited greater cue-induced cotinine-seeking on withdrawal day 18 compared to withdrawal day 1, with no difference between male and female rats. These findings indicate that cotinine induces sex-specific relapse to drug seeking in rats, suggesting that cotinine may contribute to relapse.


Subject(s)
Cotinine , Nicotine , Animals , Conditioning, Operant , Cotinine/pharmacology , Cues , Extinction, Psychological , Female , Male , Nicotine/pharmacology , Rats , Rats, Sprague-Dawley , Recurrence , Self Administration , Yohimbine/pharmacology
7.
Brain Sci ; 12(8)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36009105

ABSTRACT

With the substantial social and medical burden of addiction, there is considerable interest in understanding risk factors that increase the development of addiction. A key feature of alcohol use disorder (AUD) is compulsive alcohol (EtOH) drinking, where EtOH drinking becomes "inflexible" after chronic intake, and animals, such as humans with AUD, continue drinking despite aversive consequences. Further, since there is a heritable component to AUD risk, some work has focused on genetically-selected, EtOH-preferring rodents, which could help uncover critical mechanisms driving pathological intake. In this regard, aversion-resistant drinking (ARD) takes >1 month to develop in outbred Wistar rats (and perhaps Sardinian-P EtOH-preferring rats). However, ARD has received limited study in Indiana P-rats, which were selected for high EtOH preference and exhibit factors that could parallel human AUD (including front-loading and impulsivity). Here, we show that P-rats rapidly developed compulsion-like responses for EtOH; 0.4 g/L quinine in EtOH significantly reduced female and male intake on the first day of exposure but had no effect after one week of EtOH drinking (15% EtOH, 24 h free-choice paradigm). Further, after 4−5 weeks of EtOH drinking, males but not females showed resistance to even higher quinine (0.5 g/L). Thus, P-rats rapidly developed ARD for EtOH, but only males developed even stronger ARD with further intake. Finally, rats strongly reduced intake of quinine-adulterated water after 1 or 5 weeks of EtOH drinking, suggesting no changes in basic quinine sensitivity. Thus, modeling ARD in P-rats may provide insight into mechanisms underlying genetic predispositions for compulsive drinking and lead to new treatments for AUDs.

8.
Behav Brain Res ; 417: 113596, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34562552

ABSTRACT

Cotinine is the major metabolite of nicotine and has recently been shown to be self-administered intravenously by rats. However, mechanisms underlying cotinine self-administration remained unknown. Mesolimbic dopamine system projecting from the ventral tegmental area (VTA) to nucleus accumbens (NAC) is closely implicated in drug reinforcement, including nicotine. The objective of the current study was to determine potential involvement of mesolimbic dopamine system in cotinine self-administration. An intracranial self-administration experiment demonstrates that cotinine at 0.88 and 1.76 ng/100 nl/infusion was self-infused into the VTA by rats. Rats produced more infusions of cotinine than vehicle and responded more on active than inactive lever during acquisition, reduced responding when cotinine was replaced by vehicle, and resumed responding during re-exposure to cotinine. Microinjection of cotinine at 1.76 ng/100 nl/infusion into the VTA increased extracellular dopamine levels within the NAC. Subcutaneous injection of cotinine at 1 mg/kg also increased extracellular dopamine levels within the NAC. Administration of the D1-like receptor antagonist SCH 23390 attenuated intravenous cotinine self-administration. On the other hand, bupropion, a catecholamine uptake inhibitor, did not significantly alter intravenous cotinine self-administration. These results suggest that activation of mesolimbic dopamine system may represent one cellular mechanism underlying cotinine self-administration. This shared mechanism between cotinine and nicotine suggests that cotinine may play a role in nicotine reinforcement.


Subject(s)
Cotinine/administration & dosage , Dopamine/physiology , Limbic System/physiology , Self Administration , Animals , Benzazepines/antagonists & inhibitors , Brain/metabolism , Bupropion , Dopamine Uptake Inhibitors , Limbic System/drug effects , Male , Microinjections , Nucleus Accumbens/drug effects , Rats , Reinforcement, Psychology , Ventral Tegmental Area/drug effects
9.
Front Behav Neurosci ; 15: 758252, 2021.
Article in English | MEDLINE | ID: mdl-34744656

ABSTRACT

Tobacco use disorder continues to be a leading public health issue and cause of premature death in the United States. Nicotine is considered as the major tobacco alkaloid causing addiction through its actions on nicotinic acetylcholine receptors (nAChRs). Current pharmacotherapies targeting nicotine's effects produce only modest effectiveness in promoting cessation, highlighting the critical need for a better understanding of mechanisms of nicotine addiction to inform future treatments. There is growing interest in identifying potential contributions of non-nicotine components to tobacco reinforcement. Cotinine is a minor alkaloid, but the major metabolite of nicotine that can act as a weak agonist of nAChRs. Accumulating evidence indicates that cotinine produces diverse effects and may contribute to effects of nicotine. In this review, we summarize findings implicating cotinine as a neuroactive metabolite of nicotine and discuss available evidence regarding potential mechanisms underlying its effects. Preclinical findings reveal that cotinine crosses the blood brain barrier and interacts with both nAChRs and non-nAChRs in the nervous system, and produces neuropharmacological and behavioral effects. Clinical studies suggest that cotinine is psychoactive in humans. However, reviewing evidence regarding mechanisms underlying effects of cotinine provides a mixed picture with a lack of consensus. Therefore, more research is warranted in order to provide better insight into the actions of cotinine and its contribution to tobacco addiction.

10.
J Pharmacol Exp Ther ; 376(3): 338-347, 2021 03.
Article in English | MEDLINE | ID: mdl-33361363

ABSTRACT

Nicotine is the major addictive component in tobacco. Cotinine is the major metabolite of nicotine and a weak agonist for nicotinic acetylcholine receptors (nAChRs). Nicotine supports self-administration in rodents. However, it remains undetermined whether cotinine can be self-administered. This study aimed to characterize cotinine self-administration in rats, to compare effects of cotinine to those of nicotine, and to determine potential involvement of nAChRs in cotinine's effects. Adult Wistar rats were trained to self-administer cotinine or nicotine (0.0075, 0.015, 0.03, or 0.06 mg/kg per infusion) under fixed-ratio (FR) and progressive-ratio (PR) schedules. Blood nicotine and cotinine levels were determined after the last FR session. Effects of mecamylamine, a nonselective nAChR antagonist, and varenicline, a partial agonist for α4ß2* nAChRs, on cotinine and nicotine self-administration were determined. Rats readily acquired cotinine self-administration, responded more on active lever, and increased motivation to self-administer cotinine when the reinforcement requirement increased. Blood cotinine levels ranged from 77 to 792 ng/ml. Nicotine induced more infusions at lower doses during FR schedules and greater breakpoints at higher doses during the PR schedule than cotinine. There was no difference in cotinine self-administration between male and female rats. Mecamylamine and varenicline attenuated nicotine but not cotinine self-administration. These results indicate that cotinine was self-administered by rats. These effects of cotinine were less robust than nicotine and exhibited no sex difference. nAChRs appeared to be differentially involved in self-administration of nicotine and cotinine. These results suggest cotinine may play a role in the development of nicotine use and misuse. SIGNIFICANCE STATEMENT: Nicotine addiction is a serious public health problem. Cotinine is the major metabolite of nicotine, but its involvement in nicotine reinforcement remains elusive. Our findings indicate that cotinine, at doses producing clinically relevant blood cotinine levels, supported intravenous self-administration in rats. Cotinine self-administration was less robust than nicotine. Mecamylamine and varenicline attenuated nicotine but not cotinine self-administration. These results suggest cotinine may play a role in the development of nicotine use and misuse.


Subject(s)
Cotinine/administration & dosage , Cotinine/pharmacology , Nicotine/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Interactions , Female , Male , Mecamylamine/pharmacology , Nicotine/administration & dosage , Rats , Rats, Wistar , Receptors, Nicotinic/metabolism , Self Administration , Varenicline/pharmacology
11.
Drug Alcohol Depend ; 214: 108165, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32688071

ABSTRACT

Previous studies have identified important mesolimbic regions in supporting the reinforcing effects of ethanol. However, the involvement of the medial prefrontal cortex (mPFC), another key region within the mesocorticolimbic system, in ethanol reinforcement has been understudied. The objective of the current study was to examine the role of the prelimbic (PL) cortex sub-region of the mPFC in ethanol reinforcement and drinking. Intracranial self-administration was used to examine the reinforcing effects of ethanol within the PL cortex. Quantitative microdialysis was used to measure basal extracellular DA concentrations and clearance in the PL cortex following chronic ethanol drinking. In addition, the involvement of dopamine (DA) D2 receptors within the PL cortex on the reinforcing effects of ethanol and ethanol drinking was determined. Ethanol was dose-dependent self-administered into the PL cortex, with significantly more infusions elicited by 100-200 mg% ethanol than vehicle. Co-infusion of the D2 receptor antagonist sulpiride significantly reduced ethanol self-administration. Chronic ethanol drinking significantly elevated basal extracellular DA concentrations without altering DA clearance. Microinjection of sulpiride into the PL cortex selectively reduced ethanol, but not saccharine, drinking. These results indicate that the PL cortex supported the reinforcing effects of ethanol, and that ethanol drinking enhanced basal DA neurotransmission within the PL cortex. In addition, D2 receptor antagonism within the PL cortex reduced ethanol self-administration and drinking. Collectively, these findings revealed important DA mechanisms within the PL cortex in mediating ethanol reinforcement and drinking.


Subject(s)
Alcohol Drinking/metabolism , Dopamine/metabolism , Receptors, Dopamine/metabolism , Animals , Ethanol/administration & dosage , Male , Microdialysis , Prefrontal Cortex/metabolism , Reinforcement, Psychology , Self Administration , Sulpiride , Synaptic Transmission/drug effects
12.
Alcohol ; 68: 37-47, 2018 05.
Article in English | MEDLINE | ID: mdl-29448234

ABSTRACT

Binge drinking of alcohol during adolescence is a serious public health concern with long-term consequences, including decreased hippocampal and prefrontal cortex volume and deficits in memory. We used RNA sequencing to assess the effects of adolescent binge drinking on gene expression in these regions. Male adolescent alcohol-preferring (P) rats were exposed to repeated binge drinking (three 1-h sessions/day during the dark/cycle, 5 days/week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session). Ethanol significantly altered the expression of 416 of 11,727 genes expressed in the ventral hippocampus. Genes and pathways involved in neurogenesis, long-term potentiation, and axonal guidance were decreased, which could relate to the impaired memory function found in subjects with adolescent alcohol binge-like exposure. The decreased expression of myelin and cholesterol genes and apparent decrease in oligodendrocytes in P rats could result in decreased myelination. In the medial prefrontal cortex, 638 of 11,579 genes were altered; genes in cellular stress and inflammatory pathways were increased, as were genes involved in oxidative phosphorylation. Overall, the results of this study suggest that adolescent binge-like alcohol drinking may alter the development of the ventral hippocampus and medial prefrontal cortex and produce long-term consequences on learning and memory, and on control of impulsive behaviors.


Subject(s)
Alcohol Drinking/genetics , Alcohol Drinking/psychology , Binge Drinking/genetics , Binge Drinking/psychology , Gene Expression Regulation/drug effects , Hippocampus/metabolism , Prefrontal Cortex/metabolism , Animals , Axons/drug effects , Drug Synergism , Hippocampus/drug effects , Male , Neurogenesis/drug effects , Neurogenesis/genetics , Oxidative Phosphorylation/drug effects , Prefrontal Cortex/drug effects , Rats , Signal Transduction/drug effects , Signal Transduction/genetics
13.
Alcohol Clin Exp Res ; 41(11): 1896-1906, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28858384

ABSTRACT

BACKGROUND: A Grm2 cys407* stop codon mutation, which results in a loss of the metabotropic glutamate 2 (mGlu2) receptor protein, was identified as being associated with high alcohol drinking by alcohol-preferring (P) rats. The objectives of the current study were to characterize the effects of reduced levels of mGlu2 receptors on glutamate transmission and alcohol drinking. METHODS: Quantitative no-net-flux microdialysis was used to test the hypothesis that basal extracellular glutamate levels in the prelimbic (PL) cortex and nucleus accumbens shell (NACsh) will be higher in P than Wistar rats. A lentiviral-delivered short-hairpin RNA (shRNA)-mediated knockdown was used to test the hypothesis that reduced levels of mGlu2 receptors within the PL cortex will increase voluntary alcohol drinking by Wistar rats. A linear regression analysis was used to test the hypothesis that there will be a significant correlation between the Grm2 cys407* mutation and level of alcohol intake. RESULTS: Extracellular glutamate concentrations within the PL cortex (3.6 ± 0.6 vs. 6.4 ± 0.6 µM) and NACsh (3.2 ± 0.4 vs. 6.6 ± 0.6 µM) were significantly lower in female P than female Wistar rats. Western blot detected the presence of mGlu2 receptors in these regions of female Wistar rats, but not female P rats. Micro-infusion of shRNAs into the PL cortex significantly reduced local mGlu2 receptor levels (by 40%), but did not alter voluntary alcohol drinking in male Wistar rats. In addition, there was no significant correlation between the Grm2 mutation and alcohol intake in 36 rodent lines (r = 0.29, p > 0.05). CONCLUSIONS: Collectively, these results suggest a lack of association between the loss of mGlu2 receptors and glutamate transmission in the NACsh and PL cortex of female P rats, and between the level of mGlu2 receptors in the PL cortex and alcohol drinking of male Wistar rats.


Subject(s)
Alcohol Drinking/metabolism , Cerebral Cortex/metabolism , Glutamic Acid/metabolism , Nucleus Accumbens/metabolism , Receptors, Metabotropic Glutamate/metabolism , Synaptic Transmission/physiology , Animals , Cerebral Cortex/drug effects , Ethanol/administration & dosage , Female , Male , Microdialysis/methods , Nucleus Accumbens/drug effects , Rats , Rats, Wistar , Synaptic Transmission/drug effects
14.
Neuropharmacology ; 109: 41-48, 2016 10.
Article in English | MEDLINE | ID: mdl-27260326

ABSTRACT

Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 µM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 µM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to âˆ¼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 µM sulpiride: to âˆ¼ 190-240 vs 150-160% of baseline). LY341495 (at 10 µM) increased extracellular glutamate and DA levels in the 'Water' (to âˆ¼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.


Subject(s)
Alcohol Drinking/metabolism , Dopamine/metabolism , Ethanol/administration & dosage , Receptors, Dopamine D2/physiology , Receptors, Metabotropic Glutamate/physiology , Ventral Tegmental Area/physiology , Animals , Dopamine D2 Receptor Antagonists/administration & dosage , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Female , Microdialysis , Microinjections , Rats , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Ventral Tegmental Area/drug effects
15.
Alcohol Clin Exp Res ; 40(5): 955-68, 2016 05.
Article in English | MEDLINE | ID: mdl-27061086

ABSTRACT

BACKGROUND: Binge drinking of alcohol during adolescence is a serious public health concern with long-term consequences, including increased pain, fear, and anxiety. The periaqueductal gray (PAG) is involved in processing pain, fear, and anxiety. The effects of adolescent binge drinking on gene expression in this region have yet to be studied. METHODS: Male adolescent alcohol-preferring (P) rats were exposed to repeated binge drinking (three 1-hour sessions/d during the dark/cycle, 5 days/wk for 3 weeks starting at 28 days of age; ethanol intakes of 2.5 to 3 g/kg/session). We used RNA sequencing to assess the effects of ethanol intake on gene expression. RESULTS: Ethanol significantly altered the expression of 1,670 of the 12,123 detected genes: 877 (53%) decreased. In the glutamate system, 23 genes were found to be altered, including reduction in 7 of 10 genes for metabotropic and NMDA receptors. Subunit changes in the NMDA receptor may make it less sensitive to ethanol. Changes in GABAA genes would most likely increase the ability of the PAG to produce tonic inhibition. Five serotonin receptor genes, 6 acetylcholine receptor genes, and 4 glycine receptor genes showed decreased expression in the alcohol-drinking rats. Opioid genes (e.g., Oprk1, Oprm1) and genes for neuropeptides linked to anxiety and panic behaviors (e.g., Npy1r) had mostly decreased expression. Genes for 27 potassium, 10 sodium, and 5 calcium ion channels were found to be differentially expressed. Nine genes in the cholesterol synthesis pathway had decreased expression, including Hmgcr, encoding the rate-limiting enzyme. Genes involved in the production of myelin also had decreased expression. CONCLUSIONS: The results demonstrate that binge alcohol drinking during adolescence produces developmental changes in the expression of key genes within the PAG; many of these changes point to increased susceptibility to pain, fear, and anxiety, which could contribute to excessive drinking to relieve these negative effects.


Subject(s)
Binge Drinking/metabolism , Cholesterol/biosynthesis , Ion Channels/biosynthesis , Neuropeptides/biosynthesis , Periaqueductal Gray/metabolism , Receptors, Neurotransmitter/biosynthesis , Animals , Gene Expression/drug effects , Male , Rats , Rats, Inbred Strains , Sequence Analysis, RNA , Signal Transduction/genetics
16.
J Psychopharmacol ; 29(6): 725-33, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25922425

ABSTRACT

Ethanol is reinforcing within the nucleus accumbens shell (NACsh), but the underlying mechanisms remain unclear. Ethanol can potentiate the function of the GABAA, GABAB, and serotonin-3 (5-HT3) receptors. Therefore, the current study tested the hypothesis that activation of these receptors would be involved in the reinforcing effects of ethanol in the NACsh. An intracranial self-administration (ICSA) procedure was used to assess the reinforcing effects of ethanol in the NACsh of alcohol preferring (P) rats. The ICSA consisted of seven sessions: four sessions to establish 150 mg% ethanol self-infusion into the NACsh; sessions 5 and 6 with co-infusion of ethanol plus one concentration of the GABAA antagonist bicuculline (10 or 100 µM), the GABAB antagonist SCH 50911 (50, 75 or 100 µM), or the 5-HT3 receptor antagonist zacopride (10 or 100 µM); and session 7 with 150 mg% ethanol alone. All groups self-infused ethanol into the NACsh and readily discriminated the active from inactive lever during the acquisition sessions. Co-infusion of 100 µM, but not 10 µM, bicuculline or zacopride significantly decreased active responses during sessions 5 and 6. Co-infusion of 75 µM, but not 50 or 100 µM, SCH 50911 significantly attenuated responses for ethanol. Overall, the results suggest that the reinforcing effects of ethanol in the NACsh may be modulated by activation of local GABAA, GABAB and 5-HT3 receptors.


Subject(s)
Ethanol/administration & dosage , Nucleus Accumbens/drug effects , Receptors, Serotonin/metabolism , gamma-Aminobutyric Acid/metabolism , Alcohol Drinking/adverse effects , Animals , Benzamides/pharmacology , Bicuculline/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Female , Nucleus Accumbens/metabolism , Rats , Receptors, Serotonin, 5-HT3 , Reinforcement, Psychology , Self Administration/methods , Serotonin/metabolism
17.
Psychopharmacology (Berl) ; 232(13): 2251-62, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25585681

ABSTRACT

RATIONALE: Phosphodiesterase-4 (PDE4) and neuroimmune signaling have been posited to regulate alcohol drinking. OBJECTIVES: This study evaluated the involvement of PDE4 and Il22ra2 on ethanol (EtOH) intake by alcohol-preferring (P) and high-alcohol-drinking (HAD1) rats. METHODS: Exp 1 determined the dose-response effects of PDE4 inhibitors, rolipram, and Ro 20-1724, on 2 h/day free-choice EtOH intake by adult P and HAD1 rats. Exps 2-3 examined the effects of repeated administration with the PDE4 inhibitors on EtOH or sucrose intake and locomotor behavior. Exp 4 determined Pde4-associated gene expression differences in subregions of the extended amygdala, between high- and low-alcohol-consuming rat lines. Exp 5 evaluated the effects of infusing short hairpin RNA to knock down Il22ra2 in the nucleus accumbens (NAc) shell on a 24-h free-choice EtOH drinking by P rats. RESULTS: Administration of rolipram or Ro 20-1724 reduced EtOH intake by P rats; Ro 20-1724 reduced EtOH intake by HAD1 rats. Repeated rolipram or Ro 20-1724 exposure reduced EtOH intake by P and HAD1 rats. PDE4 inhibition induced motor impairment during the first hour of EtOH intake by P rats. Higher gene expression levels for PDE4A were found in the NAc shell of P vs NP rats. ShRNAs targeting Il22ra2 in the NAc shell significantly reduced chronic EtOH intake. CONCLUSIONS: PDE4 and neuroinflammatory/immune signaling pathways could represent molecular targets for the treatment of alcohol use disorders in genetically predisposed subjects. This study underscores the importance of testing compounds over multiple days and rat lines when determining efficacy to disrupt excessive alcohol intake.


Subject(s)
Alcohol Drinking/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 4 , Drug Delivery Systems/methods , Ethanol/administration & dosage , Phosphodiesterase 4 Inhibitors/administration & dosage , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dose-Response Relationship, Drug , Female , Male , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Rolipram/administration & dosage , Species Specificity
18.
Pharmacol Biochem Behav ; 129: 87-96, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25542586

ABSTRACT

Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system.


Subject(s)
Alcohol Drinking , Dorsal Raphe Nucleus/metabolism , Gene Expression Profiling , Ion Channels/metabolism , Neuropeptides/metabolism , Receptors, GABA-A/metabolism , Serotonin/metabolism , Animals , Ion Channels/genetics , Male , Neuropeptides/genetics , Rats , Receptors, GABA-A/genetics , Sequence Analysis, RNA , Serotonin/genetics
19.
Addict Biol ; 20(3): 458-68, 2015 May.
Article in English | MEDLINE | ID: mdl-24674134

ABSTRACT

Ethanol can be self-infused directly into the posterior ventral tegmental area (pVTA) and these effects involve activation of local dopamine neurons. However, the neuro-circuitry beyond the pVTA involved in these reinforcing effects has not been explored. Intra-pVTA microinjection of ethanol increases dopamine release in the nucleus accumbens (NAC), medial prefrontal cortex (mPFC) and ventral pallidum (VP). The present study tested the hypothesis that the reinforcing effects of ethanol within the pVTA involve the activation of dopamine projections from the pVTA to the NAC, VP and mPFC. Following the acquisition of self-infusions of 200 mg% ethanol into the pVTA, either the dopamine D2 receptor antagonist sulpiride (0, 10 or 100 µM) or the D1 receptor antagonist SCH-23390 (0, 10 or 100 µM) was microinjected into the ipsilateral NAC shell (NACsh), NAC core (NACcr), VP or mPFC immediately prior to the self-infusion sessions to assess the involvement of the different dopamine projections in the reinforcing effects of ethanol. Microinjection of each compound at higher concentration into the NACsh, VP or mPFC, but not the NACcr, significantly reduced the responses on the active lever (from 40-50 to approximately 20 responses). These results indicate that activation of dopamine receptors in the NACsh, VP or mPFC, but not the NACcr, is involved in mediating the reinforcing effects of ethanol in the pVTA, suggesting that the 'alcohol reward' neuro-circuitry consist of, at least in part, activation of the dopamine projections from the pVTA to the NACsh, VP and mPFC.


Subject(s)
Central Nervous System Depressants/pharmacology , Dopamine/physiology , Ethanol/pharmacology , Reinforcement, Psychology , Synaptic Transmission/drug effects , Ventral Tegmental Area/drug effects , Analysis of Variance , Animals , Conditioning, Operant , Dopamine Antagonists/pharmacology , Female , Limbic System/drug effects , Nucleus Accumbens/drug effects , Prosencephalon/drug effects , Rats, Wistar , Receptors, Dopamine/drug effects , Self Administration , Sulpiride/pharmacology
20.
Pharmacol Biochem Behav ; 117: 52-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24355552

ABSTRACT

The objective of this study was to determine changes in gene expression within the extended amygdala following binge-like alcohol drinking by male adolescent alcohol-preferring (P) rats. Starting at 28 days of age, P rats were given concurrent access to 15 and 30% ethanol for 3 one-h sessions/day for 5 consecutive days/week for 3 weeks. Rats were killed by decapitation 3 h after the first ethanol access session on the 15th day of drinking. RNA was prepared from micropunch samples of the nucleus accumbens shell (Acb-sh) and central nucleus of the amygdala (CeA). Ethanol intakes were 2.5-3.0 g/kg/session. There were 154 and 182 unique named genes that significantly differed (FDR=0.2) between the water and ethanol group in the Acb-sh and CeA, respectively. Gene Ontology (GO) analyses indicated that adolescent binge drinking produced changes in biological processes involved with cell proliferation and regulation of cellular structure in the Acb-sh, and in neuron projection and positive regulation of cellular organization in the CeA. Ingenuity Pathway Analysis indicated that, in the Acb-sh, there were several major intracellular signaling pathways (e.g., cAMP-mediated and protein kinase A signaling pathways) altered by adolescent drinking, with 3-fold more genes up-regulated than down-regulated in the alcohol group. The cAMP-mediated signaling system was also up-regulated in the CeA of the alcohol group. Weighted gene co-expression network analysis indicated significant G-protein coupled receptor signaling and transmembrane receptor protein kinase signaling categories in the Acb-sh and CeA, respectively. Overall, the results of this study indicated that binge-like alcohol drinking by adolescent P rats is differentially altering the expression of genes in the Acb-sh and CeA, some of which are involved in intracellular signaling pathways and may produce changes in neuronal function.


Subject(s)
Alcohol Drinking , Amygdala/metabolism , Ethanol/pharmacology , Gene Expression Regulation/drug effects , Animals , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...