Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Brain Behav Immun ; 119: 767-780, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677625

ABSTRACT

The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.

2.
Sci Total Environ ; 929: 172611, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642764

ABSTRACT

Understanding the dynamics of carbon and water vapor fluxes in arid inland river basin ecosystems is essential for predicting and assessing the regional carbon-water budget amid climate change. However, studies aiming to unravel the mechanisms driving the variations and coupling process of regional carbon-water budget in a changing environment in arid regions are limited. Here, we used the eddy covariance technique to analyze the relationship between CO2 and H2O fluxes in three typical ecosystems across the upper, middle, and lower reaches of an arid inland river basin in Northwestern China. Our results showed that all ecosystems acted as carbon sinks, with the alpine swamp meadow, cropland, and desert shrubland sequestrating -300.2 ± 0.01, -644.8 ± 2.9, and - 203.7 ± 22.5 g C m-2 yr-1, respectively. Air temperature (Ta) primarily controlled daily gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE) in the irrigated cropland during the growing season, while soil temperature (Ts) and vapor pressure deficit (VPD) regulated these parameters in the alpine swamp meadow and desert shrubland. Additionally, Ta and net radiation (Rn) controlled daily evapotranspiration (ET) in cropland, while Ts and Rn regulated ET at other sites. Consequently, carbon and water vapor fluxes of all three ecosystems tended to be energy-limited during the growing season. The differential responses of carbon and water vapor fluxes in the upper, middle, and lower reaches of these ecosystems to biophysical factors determined their distinct coupling and variations in water use efficiency. Notably, the desert shrub ecosystem in the lower reach of the basin maintained a stable balance between carbon gain and water loss, indicating adaptation to aridity. This study provides valuable insights into the underlying mechanisms behind the changes in carbon and water vapor fluxes and water-use efficiency in arid river basin ecosystems.

3.
Article in English | MEDLINE | ID: mdl-38317060

ABSTRACT

BACKGROUND: The genetic architecture of juvenile idiopathic arthritis (JIA) remains only partially comprehended. There is a clear imperative for continued endeavors to uncover insights into the underlying causes of JIA. METHODS: This study encompassed a comprehensive spectrum of endeavors, including conducting a JIA GWAS meta-analysis that incorporated data from 4,550 JIA cases and 18 446 controls. We employed in silico and genome-editing approaches to prioritize target genes. To investigate pleiotropic effects, we conducted phenome-wide association studies. Cell-type enrichment analyses were performed by integrating bulk and single-cell sequencing data. Finally, we delved into potential druggable targets for JIA. RESULTS: Fourteen genome-wide significant non-HLA loci were identified including four novel loci, each exhibiting pleiotropic associations with other autoimmune diseases or musculoskeletal traits. We uncovered strong genetic correlation between JIA and bone mineral density (BMD) traits at 52 genomic regions, including three GWAS loci for JIA. Candidate genes with immune functions were captured by in silico analyses at each novel locus, with additional findings identified through our experimental approach. Cell-type enrichment analysis revealed 21 specific immune cell types crucial for affected organs in JIA, indicating their potential contribution to the disease. Finally, 24 known or candidate druggable target genes were prioritized. CONCLUSIONS: Our identification of four novel JIA associated genes, CD247, RHOH, COLEC10 and IRF8, broadens novel potential drug repositioning opportunities. We established a new genetic link between COLEC10, TNFRSF11B and JIA/BMD. Additionally, the identification of RHOH underscores its role in positive thymocyte selection, thereby illuminating a critical facet of JIA's underlying biological mechanisms.

4.
Article in English | MEDLINE | ID: mdl-38191060

ABSTRACT

BACKGROUND: CLEC16A intron 19 has been identified as a candidate locus for common variable immunodeficiency (CVID). OBJECTIVES: This study sought to elucidate the molecular mechanism by which variants at the CLEC16A intronic locus may contribute to the pathogenesis of CVID. METHODS: The investigators performed fine-mapping of the CLEC16A locus in a CVID cohort, then deleted the candidate functional SNP in T-cell lines by the CRISPR-Cas9 technique and conducted RNA-sequencing to identify target gene(s). The interactions between the CLEC16A locus and its target genes were identified using circular chromosome conformation capture. The transcription factor complexes mediating the chromatin interactions were determined by proteomic approach. The molecular pathways regulated by the CLEC16A locus were examined by RNA-sequencing and reverse phase protein array. RESULTS: This study showed that the CLEC16A locus is an enhancer regulating expression of multiple target genes including a distant gene ATF7IP2 through chromatin interactions. Distinct transcription factor complexes mediate the chromatin interactions in an allele-specific manner. Disruption of the CLEC16A locus affects the AKT signaling pathway, as well as the molecular response of CD4+ T cells to immune stimulation. CONCLUSIONS: Through multiomics and targeted experimental approaches, this study elucidated the underlying target genes and signaling pathways involved in the genetic association of CLEC16A with CVID, and highlighted plausible molecular targets for developing novel therapeutics.

5.
Cancer Lett ; 582: 216594, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38135208

ABSTRACT

AIMS: DNA damage repair (DDR) plays a pivotal role in hepatocellular carcinoma (HCC), driving oncogenesis, progression, and therapeutic response. However, the mechanisms of DDR mediated immune cells and immuno-modulatory pathways in HCC are yet ill-defined. METHODS: Our study introduces an innovative deep machine learning framework for precise DDR assessment, utilizing single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data. Single-cell RNA sequencing data were obtained and in total 85,628 cells of primary or post-immunotherapy cases were analyzed. Large-scale HCC datasets, including 1027 patients in house together with public datasets, were used for 101 machine-learning models and a novel DDR feature was derived at single-cell resolution (DDRscore). Druggable targets were predicted using the reverse phase protein array (RPPA) proteomic profiling of 169 HCC patients and RNA-seq data from 22 liver cancer cell lines. RESULTS: Our investigation reveals a dynamic interplay of DDR with natural killer cells and B cells in the primary HCC microenvironment, shaping a tumor-promoting immune milieu through metabolic programming. Analysis of HCC post-immunotherapy demonstrates elevated DDR levels that induces epithelial-mesenchymal transition and fibroblast-like transformation, reshaping the fibrotic tumor microenvironment. Conversely, attenuated DDR promotes antigen cross-presentation by dendritic cells and CD8+ T cells, modulating the inflammatory tumor microenvironment. Regulatory network analysis identifies the CXCL10-CXCR3 axis as a key determinant of immunotherapeutic response in low DDR HCC, potentially regulated by transcription factors GATA3, REL, and TBX21. Using machine learning techniques by combining bulk RNA-seq data in house together with public datasets, we introduce DDRscore, a robust consensus DDR scoring system to predict overall survival and resistance to PD-1 therapy in HCC patients. Finally, we identify BRAF as a potential therapeutic target for high DDRscore patients. CONCLUSION: Our comprehensive findings advance our understanding of DDR and the tumor microenvironment in HCC, providing insights into immune regulatory mechanisms mediated via DDR pathways.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , CD8-Positive T-Lymphocytes , Proteomics , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Gene Expression Profiling , DNA Damage , Tumor Microenvironment
6.
Sheng Li Xue Bao ; 75(6): 767-778, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38151342

ABSTRACT

As a member of the apolipoprotein C (ApoC) family with a relatively high content, ApoC3 plays a major role in the regulation of triglyceride metabolism, and plays an important role in the occurrence and development of cardiovascular diseases, glucose and lipid metabolism disorders. Nonalcoholic fatty liver disease (NAFLD) refers to the accumulation of a large amount of fat in the liver in the absence of a history of chronic alcohol consumption or other damage to the liver. A large number of previous studies have shown that there is a correlation between the gene polymorphism and high expression of ApoC3 and NAFLD. In the context of hypertriglyceridemia (HTG), this article reviews the relationship between ApoC3 and NAFLD, glucose and lipid metabolism, and islet ß cell function, showing that ApoC3 can not only inhibit lipoprotein lipase (LPL) and hepatic lipase (HL) activity, delay the decomposition of triglyceride in plasma to maintain the body's energy metabolism during fasting, but also be significantly increased under insulin resistance, prompting the liver to secrete a large amount of very low-density lipoprotein (VLDL) to induce HTG. Therefore, targeting and inhibiting ApoC3 might become a new approach to treat HTG. Increasing evidence suggests that ApoC3 does not appear to be an independent "contributor" to NAFLD. Similarly, our previous studies have shown that ApoC3 is not an independent factor triggering islet ß cell dysfunction in ApoC3 transgenic mice, but in a state of excess nutrition, HTG triggered by ApoC3 high expression may exacerbate the effects of hyperglycemia and insulin resistance on islet ß cell function, and the underlying mechanism remains to be further discussed.


Subject(s)
Apolipoprotein C-III , Glucose , Islets of Langerhans , Lipid Metabolism , Non-alcoholic Fatty Liver Disease , Apolipoprotein C-III/antagonists & inhibitors , Apolipoprotein C-III/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Glucose/metabolism , Humans , Animals , Hypertriglyceridemia/metabolism , Islets of Langerhans/metabolism
7.
Cell Oncol (Dordr) ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37847338

ABSTRACT

PURPOSE: Tumors bearing mismatch repair deficiency (MMRd) are characterized by a high load of neoantigens and are believed to trigger immunogenic reactions upon immune checkpoint blockade treatment such as anti-PD-1/PD-L1 therapy. However, the mechanisms are still ill-defined, as multiple cancers with MMRd exhibit variable responses to immune checkpoint inhibitors (ICIs). In endometrial cancer (EC), a distinct tumor microenvironment (TME) exists that may correspond to treatment-related efficacies. We aimed to characterize EC patients with aberrant MMR pathways to identify molecular subtypes predisposed to respond to ICI therapies. METHODS: We applied digital spatial profiling, a high-plex spatial transcriptomic approach covering over 1,800 genes, to obtain a highly resolved TME landscape in 45 MMRd-EC patients. We cross-validated multiple biomarkers identified using immunohistochemistry and multiplexed immunofluorescence using in-study and independent cohorts totaling 123 MMRd-EC patients and validated our findings using external TCGA data from microsatellite instability endometrial cancer (MSI-EC) patients. RESULTS: High-plex spatial profiling identified a 14-gene signature in the MMRd tumor-enriched regions stratifying tumors into "hot", "intermediate" and "cold" groups according to their distinct immune profiles, a finding highly consistent with the corresponding CD8 + T-cell infiltration status. Our validation studies further corroborated an existing coregulatory network involving HLA class I and DNMT3A potentially bridged through dynamic crosstalk incorporating CCL5. CONCLUSION: Our study confirmed the heterogeneous TME status within MMRd-ECs and showed that these ECs can be stratified based on potential biomarkers such as HLA class I, DNMT3A and CD8 in pathological settings for improved ICI therapeutic efficacy in this subset of patients.

8.
Zhongguo Gu Shang ; 36(9): 839-45, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37735075

ABSTRACT

OBJECTIVE: To investigate the causes of soft tissue complications in patients with dorsal displacement distal radius fractures (DRF) after volar locking plate surgery. METHODS: From July 2016 to May 2021, 112 patients with dorsal displacement DRF were treated with volar locking plate surgery, including 45 males and 67 females. The average age was (46.24±10.08) years old, ranging from 18 to 85 years old. According to whether there were soft tissue complications after operation, they were divided into complication group (40 cases) and non complication group (72 cases). Compared with preoperation, the radial metacarpal inclination and ulnar deflection angle, wrist flexion activity and dorsal extension activity, and grip strength of patients after operation were significantly improved (P<0.05). Compared with the non complication group, the proportion of patients in the complication group whose age was>60 years, body mass index (BMI) more than 30 kg·m-2, smoking, diabetes, fracture type C, open fracture and operation time more than 90 min was higher (P<0.05). The age, BMI, smoking, diabetes, fracture AO classification, fracture type and operation time were analyzed by multifactor Logistic regression to determine the independent risk factors affecting the occurrence of postoperative soft tissue complications of patients, establish a nomogram prediction model, and evaluate the model. RESULTS: At the latest follow-up, the excellent and good rate of wrist joint function recovery was 83.93% (94/112), and the excellent and good rate of fracture reduction was 84.82% (95/112). Multivariate Logistic regression analysis showed that age more than 60 years old, diabetes, fracture type C, open fracture and operation time more than 90 min were independent risk factors for postoperative soft tissue complications (P<0.05). The receiver operating characteristic (ROC), calibration curve and clinical decision curve of the nomogram prediction model showed discrimination, accuracy and validity were good. CONCLUSION: Age more than 60 years, diabetes mellitus, fracture type C, open fracture, and operation time more than 90 min are all independent risk factors for soft tissue complications after DRF volar plate fixation. In clinical treatment, perioperative soft tissue management should be done in such patients to prevent complications.


Subject(s)
Fractures, Open , Metacarpal Bones , Wrist Fractures , Female , Male , Humans , Adult , Middle Aged , Adolescent , Young Adult , Aged , Aged, 80 and over , Risk Factors , Wrist Joint/surgery
9.
Sci Total Environ ; 903: 166281, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37582444

ABSTRACT

The Mu Us Desert is an ideal location to study environmental changes during the Late Quaternary, because of its unique characteristics. The Abaoyan (ABY) profile, a typical aeolian-lacustrine profile located at the eastern edge of the desert, was investigated in this study. A basic chronological framework was established based on a combination of radiocarbon dating by accelerator mass spectrometry and in situ sedimentary phase identification. Furthermore, changes in regional chemical weathering intensity since the Holocene were evaluated through comprehensive analysis of the collected samples in terms of grain size, loss on ignition (LOI), chromaticity, geochemical element contents, and soil micromorphology. The results showed that the ABY profile was under the influence of primary and moderate chemical weathering. Regional paleoclimatic environmental changes could be divided into four stages. During Stage I (before 12.6 ka BP; pre-Holocene), the ABY profile was dominated by aeolian sand, showing a coarse average grain size, low LOI, and high chromaticity values, which may have indicated a dry and cold period. During Stage II (12.6-10.3 ka BP; early Holocene), the ABY profile was dominated by lacustrine sediments, indicating a shallow lake water environment with strong chemical weathering and a warm and humid climate. During Stage III (10.3-4.2 ka BP), the profile was dominated by sandy peat deposits with a relatively large proportion of clay particles suggesting that the intensity of chemical weathering was relatively strong in the region during this period and the climate was mainly warm and humid. During Stage IV (after 4.2 ka BP), the sediment was dominated by aeolian sand and secondary loess, the chromaticity increased, the LOI reduced, and the regional chemical weathering intensity was weaker. The change in chemical weathering intensity in this region was inferred to be a positive response to the Holocene East Asian monsoon circulation.

10.
Sci Adv ; 9(20): eade6875, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37196073

ABSTRACT

The carbon sequestration capacity of alpine grasslands, composed of alpine meadows and steppes, in the Tibetan Plateau has an essential role in regulating the regional carbon cycle. However, inadequate understanding of its spatiotemporal dynamics and regulatory mechanisms restricts our ability to determine potential climate change impacts. We assessed the spatial and temporal patterns and mechanisms of the net ecosystem exchange (NEE) of carbon dioxide in the Tibetan Plateau. The carbon sequestration of the alpine grasslands ranged from 26.39 to 79.19 Tg C year-1 and had an increasing rate of 1.14 Tg C year-1 between 1982 and 2018. While alpine meadows were relatively strong carbon sinks, the semiarid and arid alpine steppes were nearly carbon neutral. Alpine meadow areas experienced strong increases in carbon sequestration mainly because of increasing temperatures, while alpine steppe areas had weak increases mainly due to increasing precipitation. Carbon sequestration capacity of alpine grasslands on the plateau has undergone persistent enhancement under a warmer and wetter climate.

11.
Methods Mol Biol ; 2660: 69-83, 2023.
Article in English | MEDLINE | ID: mdl-37191791

ABSTRACT

The rapid emergence of spatial multi-omics technologies in recent years has revolutionized biomedical research. Among these, the Digital Spatial Profiler (DSP, commercialized by nanoString) has become one of the dominant technologies in spatial transcriptomics and proteomics and has assisted in deconvoluting complex biological questions. Based on our practical experience in the past 3 years with DSP, we share here a detailed hands-on protocol and key handling notes that will allow the broader community to optimize their work procedure.


Subject(s)
Gene Expression Profiling , RNA , RNA/genetics , Gene Expression Profiling/methods , Paraffin Embedding , Tissue Fixation , Formaldehyde
12.
Opt Express ; 31(10): 16719-16728, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157745

ABSTRACT

The steerability of a quantum state can be detected by steering inequalities. The linear steering inequalities show that more steerable states can be discovered with the increase of measurements. In order to detect more steerable states in two-photon systems, we first theoretically derive an optimized steering criterion based on infinity measurements for an arbitrary two-qubit state. The steering criterion is only determined by the spin correlation matrix of the state, and do not require infinity measurements. Then, we prepared the Werner-like states in two-photon systems, and measure their spin correlation matrices. Finally, we apply three steering criteria, which include our steering criterion, the three-measurement steering criterion and the geometric Bell-like inequality, to distinguish the steerability of these states. The results show that our steering criterion can detect the most steerable states under the same experimental conditions. Thus, our work provides a valuable reference for detecting the steerability of quantum states.

13.
Front Genet ; 14: 1116284, 2023.
Article in English | MEDLINE | ID: mdl-37035746

ABSTRACT

Hallux valgus is a common form of foot deformity, and genetic factors contribute substantially to the pathogenesis of hallux valgus deformity. We conducted a genetic study on the structural variants underlying familial hallux valgus using whole exome sequencing approach. Twenty individuals from five hallux valgus families and two sporadic cases were included in this study. A total of 372 copy number variations were found and passed quality control filtering. Among them, 43 were only present in cases but not in controls or healthy individuals in the database of genomic variants. The genes covered by these copy number variations were enriched in gene sets related to immune signaling pathway, and cytochrome P450 metabolism. The hereditary CNVs demonstrate a dominant inheritance pattern. Two candidate pathogenic CNVs were further validated by quantitative-PCR. This study suggests that hallux valgus is a degenerative joint disease involving the dysregulation of immune and metabolism signaling pathways.

14.
J Magn Reson Imaging ; 58(5): 1617-1623, 2023 11.
Article in English | MEDLINE | ID: mdl-36932678

ABSTRACT

BACKGROUND: Schizophrenia is regarded as a brain network or connectome disorder that is associated with neurodevelopment. Children with early-onset schizophrenia (EOS) provide an opportunity to evaluate the neuropathology of schizophrenia at a very early stage without potential confounding factors. But dysfunction in brain networks of schizophrenia is inconsistent. PURPOSE: To identify abnormal functional connectivity (FC) in EOS patients and relationships with clinical symptoms, we aimed to reveal neuroimaging phenotypes of EOS. STUDY TYPE: Prospective, cross-sectional. POPULATION: Twenty-six female/22 male patients (age:14.3 ± 3.45 years) with first-episode EOS, 27 female/22 male age- and gender-matched healthy controls (HC) (age:14.1 ± 4.32). FIELD STRENGTH/SEQUENCE: 3-T, resting-state (rs) gradient-echo echo-planar imaging and three-dimensional magnetization-prepared rapid gradient-echo imaging. ASSESSMENT: Intelligence quotient (IQ) was measured by the Wechsler Intelligence Scale-Fourth edition for Children (WISC-IV). The clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). FC strength (FCS) from rs functional MRI (rsfMRI) was used to investigate functional integrity of global brain regions. In addition, associations between regionally altered FCS and clinical symptoms in EOS patients were examined. STATISTICAL TESTS: Two-sample t-test controlling for sample size, diagnostic method, brain volume algorithm, and age of the subjects, Bonferroni correction, Pearson's correlation analysis. A P-value <0.05 with a minimum cluster size of 50 voxels was considered statistically significant. RESULTS: Compared with HC, EOS patients had significantly lower total IQ scores (IQ:91.5 ± 16.1), increased FCS in the bilateral precuneus, left dorsolateral prefrontal cortex, left thalamus, and left parahippocampus (paraHIP), and decreased FCS in the right cerebellum posterior lobe and right superior temporal gyrus. The PANSS total score of EOS patients (PANSS total score:74.30 ± 7.23) was found to be positively correlated to FCS in the left paraHIP (r = 0.45). DATA CONCLUSION: Our study revealed that disrupted FC of brain hubs illustrate multiple abnormalities in brain networks in EOS patients. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Schizophrenia , Humans , Male , Female , Child , Adolescent , Schizophrenia/diagnostic imaging , Brain Mapping/methods , Cross-Sectional Studies , Prospective Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
15.
Cereb Cortex ; 33(7): 3840-3852, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36089839

ABSTRACT

Functional abnormalities of default mode network (DMN) have been well documented in major depressive disorder (MDD). However, the association of DMN functional reorganization with antidepressant treatment and gene expression is unclear. Moreover, whether the functional interactions of DMN could predict treatment efficacy is also unknown. Here, we investigated the link of treatment response with functional alterations of DMN and gene expression with a comparably large sample including 46 individuals with MDD before and after electroconvulsive therapy (ECT) and 46 age- and sex-matched healthy controls. Static and dynamic functional connectivity (dFC) analyses showed increased intrinsic/static but decreased dynamic functional couplings of inter- and intra-subsystems and between nodes of DMN. The changes of static functional connections of DMN were spatially correlated with brain gene expression profiles. Moreover, static and dFC of the DMN before treatment as features could predict depressive symptom improvement following ECT. Taken together, these results shed light on the underlying neural and genetic basis of antidepressant effect of ECT and the intrinsic functional connectivity of DMN have the potential to serve as prognostic biomarkers to guide accurate personalized treatment.


Subject(s)
Depressive Disorder, Major , Electroconvulsive Therapy , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/drug therapy , Default Mode Network , Depression , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping/methods , Antidepressive Agents/therapeutic use , Neural Pathways/diagnostic imaging
16.
Sci Rep ; 12(1): 22373, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572710

ABSTRACT

Systematic quantification of phosphoprotein within cell signaling networks in solid tissues remains challenging and precise quantification in large scale samples has great potential for biomarker identification and validation. We developed a reverse phase protein array (RPPA) based phosphor-antibody characterization approach by taking advantage of the lysis buffer compatible with alkaline phosphatase (AP) treatment that differs from the conventional RPPA antibody validation procedure and applied it onto fresh frozen (FF) and formalin-fixed and paraffin-embedded tissue (FFPE) to test its applicability. By screening 106 phospho-antibodies using RPPA, we demonstrated that AP treatment could serve as an independent factor to be adopted for rapid phospho-antibody selection. We also showed desirable reproducibility and specificity in clincical specimens indicating its potential for tissue-based phospho-protein profiling. Of further clinical significance, using the same approach, based on melanoma and lung cancer FFPE samples, we showed great interexperimental reproducibility and significant correlation with pathological markers in both tissues generating meaningful data that match clinical features. Our findings set a benchmark of an efficient workflow for phospho-antibody characterization that is compatible with high-plex clinical proteomics in precison oncology.


Subject(s)
Lung Neoplasms , Protein Array Analysis , Humans , Protein Array Analysis/methods , Reproducibility of Results , Tissue Fixation/methods , Formaldehyde , Lung Neoplasms/diagnosis , Antibodies , Paraffin Embedding/methods
17.
Front Aging Neurosci ; 14: 1009632, 2022.
Article in English | MEDLINE | ID: mdl-36313014

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disorder causing dementia in the elderly population. Functional disconnection of brain is considered to be the main cause of AD. In this study, we applied a newly developed association (Asso) mapping approach to directly quantify the functional disconnections and to explore the diagnostic effects for AD with resting-state functional magnetic resonance imaging data from 36 AD patients and 42 age-, gender-, and education-matched healthy controls (HC). We found that AD patients showed decreased Asso in left dorsoanterior insula (INS) while increased functional connections of INS with right medial prefrontal cortex (MPFC) and left posterior cingulate cortex (PCC). The changed Asso and functional connections were closely associated with cognitive performances. In addition, the reduced Asso and increased functional connections could serve as effective neuromarkers to distinguish AD patients from HC. Our research provided new evidence for functional disconnections in AD and demonstrated that functional disconnections between cognition-memory networks may be potential early biomarkers for AD.

18.
Front Neurosci ; 16: 956545, 2022.
Article in English | MEDLINE | ID: mdl-35968360

ABSTRACT

Subependymal heterotopia (SEH) is a rare neuronal migration disorder consisting of gray matter nodules along the lateral ventricular walls and is often associated with other brain malformations. Despite most SEH cases showing epilepsy during their lifetimes, very few patients with asymptomatically familial SEH tend to cause misdiagnosis or missed diagnosis. We present four familial SEH cases without any positive symptoms and medical history, including two fetuses, who were diagnosed by MRI and confirmed by genetic testing with mutation of filamin A. This report emphasizes the role of MRI in the recognition of SEH at an early age of gestation and in asymptomatically familial SEH. MRI provides a fast, repeatable, reliable, and cheap choice for detecting and screening familial SEH.

19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(4): 1071-1078, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-35981364

ABSTRACT

OBJECTIVE: To investigate the expression of CD47 molecules in patients with newly diagnosis of adult acute myeloid leukemia (AML) and its correlation with clinical prognosis. METHODS: 20 patients with acute myeloid leukemia diagnosed in Shanghai Fengxian District Central hospital from April 2020 to October 2021 and 5 cases with non malignant hematological diseases in the control group were collected, and the expression of CD47 in single nuclear cells of bone marrow and peripheral blood was detected by real-time fluorescence quantitative polymerase chain reaction (qPCR). Combined with the blood image, bone marrow smears, flow cytometry, chromosome and gene detection, ECOG score, etc. during the patient's initial diagnosis, the relationship between the patient's prognosis and CD47 was evaluated. RESULTS: The expression of CD47 in bone marrow (P=0.0115) and peripheral blood mononuclear cells (P=0.0069) in new diagnosis AML patients was significantly higher than that of controls. In bone marrow mononuclear cells, the total survival time of patients with high CD47 expression was less than that of CD47 low expression patients (P=0.036). There was statistical significance in difference stratification group (P=0.012), but there was no statistical significance between CD47 expression and survival time in peripheral blood mononuclear cells (P=0.116). There were no statistical significance between bone marrow mononuclear cell CD47 expression and gene mutation fusion genes related to leukemia , CD34+, CD38+, CD123+ (P>0.05). The proportion of bone marrow protocells in AML patients was >50%, the ECOG score was >2 points, MLLELL fusion gene and chromosome prognosis stratification were all risk factors affecting the survival of patients (P=0023, 0.036, 0.012, 0.001, respectively). The high expression of bone marrow CD47 in AML patients indicated a high risk of recurrence (P=0.017). CONCLUSION: The high expression of bone marrow mononuclear cell CD47 in AML patients indicates poorer survival and higher risk of recurrence.


Subject(s)
CD47 Antigen , Leukemia, Myeloid, Acute , Adult , China , Humans , Leukemia, Myeloid, Acute/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...