Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 85(3): 1846-51, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23259604

ABSTRACT

There is a critical need for a real-time, nonperturbative probe for monitoring the adulteration of automotive gasoline. Running on adulterated fuel leads to a substantive increase in air pollution, because of increased tailpipe emissions of harmful pollutants, as well as a reduction in engine performance. Consequently, both classification of the gasoline type and quantification of the adulteration content are of great significance for quality control. Gasoline adulteration detection is currently carried out in the laboratory with gas chromatography, which is time-consuming and costly. Here, we propose the application of Raman spectroscopic measurements for on-site rapid detection of gasoline adulteration. In this proof-of-principle report, we demonstrate the effectiveness of Raman spectra, in conjunction with multivariate analysis methods, in classifying the base oil types and simultaneously detecting the adulteration content in a wide range of commercial gasoline mixtures, both in their native states and spiked with different adulterants. In particular, we show that Raman spectra acquired with an inexpensive noncooled detector provides adequate specificity to clearly discriminate between the gasoline samples and simultaneously characterize the specific adulterant content with a limit of detection below 5%. Our promising results in this study illustrate, for the first time, the capability and the potential of Raman spectroscopy, together with multivariate analysis, as a low-cost, powerful tool for on-site rapid detection of gasoline adulteration and opens substantive avenues for applications in related fields of quality control in the oil industry.

2.
Biomed Opt Express ; 2(9): 2484-92, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21991542

ABSTRACT

We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed chemical information from the sample, while confocal reflectance and quantitative phase microscopy show detailed morphology. Combining these intrinsic contrast imaging modalities makes it possible to obtain quantitative morphological and chemical information without exogenous staining. For validation and characterization, we have used this multi-modal system to investigate healthy and diseased blood samples. We first show that the thickness of a healthy red blood cell (RBC) shows good correlation with its hemoglobin distribution. Further, in malaria infected RBCs, we successfully image the distribution of hemozoin (malaria pigment) inside the cell. Our observations lead us to propose morphological screening by QPM and subsequent chemical imaging by Raman for investigating blood disorders. This new approach allows monitoring cell development and cell-drug interactions with minimal perturbation of the biological system of interest.

SELECTION OF CITATIONS
SEARCH DETAIL
...