Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1056525, 2023.
Article in English | MEDLINE | ID: mdl-36798117

ABSTRACT

Currently available COVID-19 vaccines include inactivated virus, live attenuated virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based vaccines. All of them contain the spike glycoprotein as the main immunogen and result in reduced disease severity upon SARS-CoV-2 infection. While we and others have shown that mRNA-based vaccination reactivates pre-existing, cross-reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we studied cellular and humoral responses in heterologous adenovirus-vector-based ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2 (BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a homologous BNT vaccination regimen. AZ primary vaccination did not lead to measurable reactivation of cross-reactive cellular and humoral immunity compared to BNT primary vaccination. Moreover, humoral immunity induced by primary vaccination with AZ displayed differences in linear spike peptide epitope coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination, secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity, comparable to homologous primary and secondary mRNA vaccination. While induced anti-S1 IgG antibody titers were higher after heterologous vaccination, induced CD4+ T cell responses were highest in homologous vaccinated. However, the overall TCR repertoire breadth was comparable between heterologous AZ-BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ and BNT primary vaccination elicits different immune response patterns to essentially the same antigen, and the associated benefits and risks, need further investigation to inform vaccine and vaccination schedule development.


Subject(s)
BNT162 Vaccine , COVID-19 , ChAdOx1 nCoV-19 , Cross Reactions , Humans , BNT162 Vaccine/immunology , ChAdOx1 nCoV-19/immunology , COVID-19/prevention & control , Receptors, Antigen, T-Cell , SARS-CoV-2 , Vaccination
2.
J Neurol Neurosurg Psychiatry ; 93(9): 960-971, 2022 09.
Article in English | MEDLINE | ID: mdl-35835468

ABSTRACT

BACKGROUND: SARS-CoV-2 mRNA vaccination of healthy individuals is highly immunogenic and protective against severe COVID-19. However, there are limited data on how disease-modifying therapies (DMTs) alter SARS-CoV-2 mRNA vaccine immunogenicity in patients with autoimmune diseases. METHODS: As part of a prospective cohort study, we investigated the induction, stability and boosting of vaccine-specific antibodies, B cells and T cells in patients with multiple sclerosis (MS) on different DMTs after homologous primary, secondary and booster SARS-CoV-2 mRNA vaccinations. Of 126 patients with MS analysed, 105 received either anti-CD20-based B cell depletion (aCD20-BCD), fingolimod, interferon-ß, dimethyl fumarate, glatiramer acetate, teriflunomide or natalizumab, and 21 were untreated MS patients for comparison. RESULTS: In contrast to all other MS patients, and even after booster, most aCD20-BCD- and fingolimod-treated patients showed no to markedly reduced anti-S1 IgG, serum neutralising activity and a lack of receptor binding domain-specific and S2-specific B cells. Patients receiving fingolimod additionally lacked spike-reactive CD4+ T cell responses. The duration of fingolimod treatment, rather than peripheral blood B and T cell counts prior to vaccination, determined whether a humoral immune response was elicited. CONCLUSIONS: The lack of immunogenicity under long-term fingolimod treatment demonstrates that functional immune responses require not only immune cells themselves, but also access of these cells to the site of inoculation and their unimpeded movement. The absence of humoral and T cell responses suggests that fingolimod-treated patients with MS are at risk for severe SARS-CoV-2 infections despite booster vaccinations, which is highly relevant for clinical decision-making and adapted protective measures, particularly considering additional recently approved sphingosine-1-phosphate receptor antagonists for MS treatment.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Fingolimod Hydrochloride/therapeutic use , Humans , Immunity, Cellular , Multiple Sclerosis/drug therapy , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
3.
J Immunol ; 208(5): 1001-1005, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35121642

ABSTRACT

Advanced age is a main risk factor for severe COVID-19. However, low vaccination efficacy and accelerated waning immunity have been reported in this age group. To elucidate age-related differences in immunogenicity, we analyzed human cellular, serological, and salivary SARS-CoV-2 spike glycoprotein-specific immune responses to the BNT162b2 COVID-19 vaccine in old (69-92 y) and middle-aged (24-57 y) vaccinees compared with natural infection (COVID-19 convalescents, 21-55 y of age). Serological humoral responses to vaccination excee-ded those of convalescents, but salivary anti-spike subunit 1 (S1) IgA and neutralizing capacity were less durable in vaccinees. In old vaccinees, we observed that pre-existing spike-specific CD4+ T cells are associated with efficient induction of anti-S1 IgG and neutralizing capacity in serum but not saliva. Our results suggest pre-existing SARS-CoV-2 cross-reactive CD4+ T cells as a predictor of an efficient COVID-19 vaccine-induced humoral immune response in old individuals.


Subject(s)
Aging/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Nursing Homes , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccine Efficacy , Young Adult
4.
Science ; 374(6564): eabh1823, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34465633

ABSTRACT

The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)­reactive and SARS-CoV-2­cross-reactive CD4+ T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830­reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti­SARS-CoV-2-S1-IgG antibodies. Spike­cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike­cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Aged, 80 and over , Asymptomatic Diseases , BNT162 Vaccine , CD3 Complex/immunology , COVID-19 Vaccines/immunology , Cross Reactions , Female , Humans , Immunity , Immunodominant Epitopes/immunology , Male , Middle Aged , Open Reading Frames , Peptide Fragments/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
5.
Nature ; 587(7833): 270-274, 2020 11.
Article in English | MEDLINE | ID: mdl-32726801

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the rapidly unfolding coronavirus disease 2019 (COVID-19) pandemic1,2. Clinical manifestations of COVID-19 vary, ranging from asymptomatic infection to respiratory failure. The mechanisms that determine such variable outcomes remain unresolved. Here we investigated CD4+ T cells that are reactive against the spike glycoprotein of SARS-CoV-2 in the peripheral blood of patients with COVID-19 and SARS-CoV-2-unexposed healthy donors. We detected spike-reactive CD4+ T cells not only in 83% of patients with COVID-19 but also in 35% of healthy donors. Spike-reactive CD4+ T cells in healthy donors were primarily active against C-terminal epitopes in the spike protein, which show a higher homology to spike glycoproteins of human endemic coronaviruses, compared with N-terminal epitopes. Spike-protein-reactive T cell lines generated from SARS-CoV-2-naive healthy donors responded similarly to the C-terminal region of the spike proteins of the human endemic coronaviruses 229E and OC43, as well as that of SARS-CoV-2. This results indicate that spike-protein cross-reactive T cells are present, which were probably generated during previous encounters with endemic coronaviruses. The effect of pre-existing SARS-CoV-2 cross-reactive T cells on clinical outcomes remains to be determined in larger cohorts. However, the presence of spike-protein cross-reactive T cells in a considerable fraction of the general population may affect the dynamics of the current pandemic, and has important implications for the design and analysis of upcoming trials investigating COVID-19 vaccines.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , COVID-19 , Cell Line , Coronavirus 229E, Human/immunology , Coronavirus NL63, Human/immunology , Coronavirus OC43, Human/immunology , Cross Reactions , Epitopes, T-Lymphocyte/immunology , Female , Healthy Volunteers , Humans , Lymphocyte Activation , Male , Middle Aged , Pandemics , SARS-CoV-2
6.
J Thromb Haemost ; 18(5): 1075-1080, 2020 05.
Article in English | MEDLINE | ID: mdl-32011092

ABSTRACT

Adeno-associated virus serotype 8 (AAV8) gene therapy has shown efficacy in several clinical trials and is considered a highly promising technology to treat monogenic diseases such as hemophilia A and B. However, a major drawback of AAV8 gene therapy is that it can be applied only once because anti-AAV8 immunity develops after the first treatment. Readministration may be required in patients who are expected to need redosing, eg, due to organ growth, or to boost suboptimal expression levels, but no redosing protocol has been established. We have developed a preventive immune-suppressive protocol for a human factor IX (FIX) vector with an intended dose of ~5 × 1011  vg/kg that inhibits the development of anti-AAV8 neutralizing-antibody (NAb) responses and anti-AAV8 T-cell responses using CTLA4-IgG (abatacept). In a preclinical model, transient treatment with abatacept during initial human FIX gene therapy efficiently inhibited the generation of AAV8-specific cellular and humoral responses, and thus permitted redosing of FIX. Furthermore, our data suggest that by suppression of anti-AAV8 NAb responses after the second higher dose (4 × 1012  vg/kg) this protocol can be used to enable redosing up to such high doses. An additional advantage of CTLA4-IgG blocking CD28-mediated signals is its potential suppression of AAV8-specific cytotoxic CD8 T-cell responses, which are believed to kill transduced hepatocytes and might interfere with a successful readministration. Redosing protocols using approved drugs would be beneficial for patients because they could effortlessly be applied in clinical trials and enable safe and efficient treatment options for patients undergoing AAV8 gene therapy.


Subject(s)
CD28 Antigens , Genetic Vectors , CD28 Antigens/genetics , Dependovirus/genetics , Factor IX/genetics , Humans , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL
...