Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Microb Genom ; 9(9)2023 09.
Article in English | MEDLINE | ID: mdl-37676707

ABSTRACT

Respiratory viral infections are a major global clinical problem, and rapid, cheap, scalable and agnostic diagnostic tests that capture genome-level information on viral variation are urgently needed. Metagenomic approaches would be ideal, but remain currently limited in that much of the genetic content in respiratory samples is human, and amplifying and sequencing the viral/pathogen component in an unbiased manner is challenging. PCR-based tests, including those which detect multiple pathogens, are already widely used, but do not capture information on strain-level variation; tests with larger viral repertoires are also expensive on a per-test basis. One intermediate approach is the use of large panels of viral probes or 'baits', which target or 'capture' sequences representing complete genomes amongst several different common viral pathogens; these are then amplified, sequenced and analysed with a sequence analysis workflow. Here we evaluate one such commercial bait capture method (the Twist Bioscience Respiratory Virus Research Panel) and sequence analysis workflow (OneCodex), using control (simulated) and patient samples head-to-head with a validated multiplex PCR clinical diagnostic test (BioFire FilmArray). We highlight the limited sensitivity and specificity of the joint Twist Bioscience/OneCodex approach, which are further reduced by shortening workflow times and increasing sample throughput to reduce per-sample costs. These issues with performance may be driven by aspects of both the laboratory (e.g. capacity to enrich for viruses present in low numbers), bioinformatics methods used (e.g. a limited viral reference database) and thresholds adopted for calling a virus as present or absent. As a result, this workflow would require further optimization prior to any implementation for respiratory virus characterization in a routine diagnostic healthcare setting.


Subject(s)
Computational Biology , Hybridization, Genetic , Humans , Workflow , Nucleic Acid Hybridization , Multiplex Polymerase Chain Reaction
2.
mBio ; 14(2): e0024323, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37017518

ABSTRACT

Clostridioides difficile remains a key cause of healthcare-associated infection, with multidrug-resistant (MDR) lineages causing high-mortality (≥20%) outbreaks. Cephalosporin treatment is a long-established risk factor, and antimicrobial stewardship is a key control. A mechanism underlying raised cephalosporin MICs has not been identified in C. difficile, but among other species, this is often acquired via amino acid substitutions in cell wall transpeptidases (penicillin binding proteins [PBPs]). Here, we investigated five C. difficile transpeptidases (PBP1 to PBP5) for recent substitutions, associated cephalosporin MICs, and co-occurrence with fluoroquinolone resistance. Previously published genome assemblies (n = 7,096) were obtained, representing 16 geographically widespread lineages, including healthcare-associated ST1(027). Recent amino acid substitutions were found within PBP1 (n = 50) and PBP3 (n = 48), ranging from 1 to 10 substitutions per genome. ß-Lactam MICs were measured for closely related pairs of wild-type and PBP-substituted isolates separated by 20 to 273 single nucleotide polymorphisms (SNPs). Recombination-corrected phylogenies were constructed to date substitution acquisition. Key substitutions such as PBP3 V497L and PBP1 T674I/N/V emerged independently across multiple lineages. They were associated with extremely high cephalosporin MICs; 1 to 4 doubling dilutions >wild-type, up to 1,506 µg/mL. Substitution patterns varied by lineage and clade, showed geographic structure, and occurred post-1990, coincident with the gyrA and/or gyrB substitutions conferring fluoroquinolone resistance. In conclusion, recent PBP1 and PBP3 substitutions are associated with raised cephalosporin MICs in C. difficile. Their co-occurrence with fluoroquinolone resistance hinders attempts to understand the relative importance of these drugs in the dissemination of epidemic lineages. Further controlled studies of cephalosporin and fluoroquinolone stewardship are needed to determine their relative effectiveness in outbreak control. IMPORTANCE Fluoroquinolone and cephalosporin use in healthcare settings has triggered outbreaks of high-mortality, multidrug-resistant C. difficile infection. Here, we identify a mechanism associated with raised cephalosporin MICs in C. difficile comprising amino acid substitutions in two cell wall transpeptidase enzymes (penicillin binding proteins). The higher the number of substitutions, the greater the impact on phenotype. Dated phylogenies revealed that substitutions associated with raised cephalosporin and fluoroquinolone MICs were co-acquired immediately before clinically important outbreak strains emerged. PBP substitutions were geographically structured within genetic lineages, suggesting adaptation to local antimicrobial prescribing. Antimicrobial stewardship of cephalosporins and fluoroquinolones is an effective means of C. difficile outbreak control. Genetic changes associated with raised MIC may impart a "fitness cost" after antibiotic withdrawal. Our study therefore identifies a mechanism that may explain the contribution of cephalosporin stewardship to resolving outbreak conditions. However, due to the co-occurrence of raised cephalosporin MICs and fluoroquinolone resistance, further work is needed to determine the relative importance of each.


Subject(s)
Clostridioides difficile , Peptidyl Transferases , Fluoroquinolones/pharmacology , Penicillin-Binding Proteins/genetics , Clostridioides , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Monobactams/pharmacology , Microbial Sensitivity Tests
3.
J Clin Microbiol ; 61(3): e0157822, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36815861

ABSTRACT

Universal access to drug susceptibility testing for newly diagnosed tuberculosis patients is recommended. Access to culture-based diagnostics remains limited, and targeted molecular assays are vulnerable to emerging resistance mutations. Improved protocols for direct-from-sputum Mycobacterium tuberculosis sequencing would accelerate access to comprehensive drug susceptibility testing and molecular typing. We assessed a thermo-protection buffer-based direct-from-sample M. tuberculosis whole-genome sequencing protocol. We prospectively analyzed 60 acid-fast bacilli smear-positive clinical sputum samples in India and Madagascar. A diversity of semiquantitative smear positivity-level samples were included. Sequencing was performed using Illumina and MinION (monoplex and multiplex) technologies. We measured the impact of bacterial inoculum and sequencing platforms on genomic read depth, drug susceptibility prediction performance, and typing accuracy. M. tuberculosis was identified by direct sputum sequencing in 45/51 samples using Illumina, 34/38 were identified using MinION-monoplex sequencing, and 20/24 were identified using MinION-multiplex sequencing. The fraction of M. tuberculosis reads from MinION sequencing was lower than from Illumina, but monoplexing grade 3+ samples on MinION produced higher read depth than Illumina (P < 0.05) and MinION multiplexing (P < 0.01). No significant differences in sensitivity and specificity of drug susceptibility predictions were seen across sequencing modalities or within each technology when stratified by smear grade. Illumina sequencing from sputum accurately identified 1/8 (rifampin) and 6/12 (isoniazid) resistant samples, compared to 2/3 (rifampin) and 3/6 (isoniazid) accurately identified with Nanopore monoplex. Lineage agreement levels between direct and culture-based sequencing were 85% (MinION-monoplex), 88% (Illumina), and 100% (MinION-multiplex). M. tuberculosis direct-from-sample whole-genome sequencing remains challenging. Improved and affordable sample treatment protocols are needed prior to clinical deployment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid , Rifampin , Microbial Sensitivity Tests , Sputum/microbiology , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Genomics , Tuberculosis, Multidrug-Resistant/microbiology
4.
Open Forum Infect Dis ; 9(9): ofac428, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36119959

ABSTRACT

Microbes unculturable in vitro remain diagnostically challenging, dependent historically on clinical findings, histology, or targeted molecular detection. We applied whole-genome sequencing directly from tissue to diagnose infections with mycobacteria (leprosy) and parasites (coenurosis). Direct pathogen DNA sequencing provides flexible solutions to diagnosis of difficult pathogens in diverse contexts.

5.
Elife ; 102021 06 11.
Article in English | MEDLINE | ID: mdl-34114561

ABSTRACT

Clostridioides difficile infection (CDI) remains an urgent global One Health threat. The genetic heterogeneity seen across C. difficile underscores its wide ecological versatility and has driven the significant changes in CDI epidemiology seen in the last 20 years. We analysed an international collection of over 12,000 C. difficile genomes spanning the eight currently defined phylogenetic clades. Through whole-genome average nucleotide identity, and pangenomic and Bayesian analyses, we identified major taxonomic incoherence with clear species boundaries for each of the recently described cryptic clades CI-III. The emergence of these three novel genomospecies predates clades C1-5 by millions of years, rewriting the global population structure of C. difficile specifically and taxonomy of the Peptostreptococcaceae in general. These genomospecies all show unique and highly divergent toxin gene architecture, advancing our understanding of the evolution of C. difficile and close relatives. Beyond the taxonomic ramifications, this work may impact the diagnosis of CDI.


Subject(s)
Bacterial Toxins/genetics , Clostridioides difficile/classification , Clostridioides difficile/genetics , Clostridium Infections/genetics , Bayes Theorem , Clostridioides/genetics , Clostridium Infections/epidemiology , Genome, Bacterial , Humans , Phylogeny
6.
Wellcome Open Res ; 5: 181, 2020.
Article in English | MEDLINE | ID: mdl-33283055

ABSTRACT

Background: Laboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. Methods: We undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=462 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. Results: We identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected ≥28 days post symptom onset, 0/494 (0%, 95%CI 0-0.7%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. Conclusions: vRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19.

7.
Microb Genom ; 6(10)2020 10.
Article in English | MEDLINE | ID: mdl-33030421

ABSTRACT

Clostridioides difficile is a common cause of nosocomial diarrhoea. Toxins TcdA and TcdB are considered to be the main virulence factors and are encoded by the PaLoc region, while the binary toxin encoded in the CdtLoc region also contributes to pathogenicity. Variant toxinotypes reflect the genetic diversity of a key toxin-encoding 19 kb genetic element (the PaLoc). Here, we present analysis of a comprehensive collection of all known major C. difficile toxinotypes to address the evolutionary relationships of the toxin gene variants, the mechanisms underlying the origin and development of variability in toxin genes and the PaLoc, and the relationship between structure and function in TcdB variants. The structure of both toxin genes is modular, composed of interspersed blocks of sequences corresponding to functional domains and having different evolutionary histories, as shown by the distribution of mutations along the toxin genes and by incongruences of domain phylogenies compared to overall C. difficile cluster organization. In TcdB protein, four mutation patterns could be differentiated, which correlated very well with the type of TcdB cytopathic effect (CPE) on cultured cells. Mapping these mutations to the three-dimensional structure of the TcdB showed that the majority of the variation occurs in surface residues and that point mutation at residue 449 in alpha helix 16 differentiated strains with different types of CPE. In contrast to the PaLoc, phylogenetic trees of the CdtLoc were more consistent with the core genome phylogenies, but there were clues that CdtLoc can also be exchanged between strains.


Subject(s)
ADP Ribose Transferases/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridioides difficile/genetics , Enterotoxins/genetics , Genome, Bacterial/genetics , Clostridioides difficile/pathogenicity , Diarrhea/microbiology , Enterocolitis, Pseudomembranous/microbiology , Evolution, Molecular , Humans , Multigene Family/genetics , Multilocus Sequence Typing , Phylogeny , Virulence Factors/genetics , Whole Genome Sequencing
8.
Euro Surveill ; 25(42)2020 10.
Article in English | MEDLINE | ID: mdl-33094717

ABSTRACT

SARS-CoV-2 IgG screening of 1,000 antenatal serum samples in the Oxford area, United Kingdom, between 14 April and 15 June 2020, yielded a 5.3% seroprevalence, mirroring contemporaneous regional data. Among the 53 positive samples, 39 showed in vitro neutralisation activity, correlating with IgG titre (Pearson's correlation p<0.0001). While SARS-CoV-2 seroprevalence in pregnancy cohorts could potentially inform population surveillance, clinical correlates of infection and immunity in pregnancy, and antenatal epidemiology evolution over time need further study.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Immunoglobulin G/blood , Pandemics , Pneumonia, Viral/epidemiology , Population Surveillance , Pregnancy Complications, Infectious/blood , Pregnancy Trimester, First/blood , Adolescent , Adult , COVID-19 , Cohort Studies , Coronavirus Infections/blood , England/epidemiology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Middle Aged , Pneumonia, Viral/blood , Pregnancy , Prenatal Diagnosis , Prevalence , SARS-CoV-2 , Seroepidemiologic Studies , Single-Blind Method , Young Adult
9.
J Clin Microbiol ; 58(10)2020 09 22.
Article in English | MEDLINE | ID: mdl-32719032

ABSTRACT

Mycobacterium tuberculosis is the leading cause of death from bacterial infection. Improved rapid diagnosis and antimicrobial resistance determination, such as by whole-genome sequencing, are required. Our aim was to develop a simple, low-cost method of preparing DNA for sequencing direct from M. tuberculosis-positive clinical samples (without culture). Simultaneous sputum liquefaction, bacteria heat inactivation (99°C/30 min), and enrichment for mycobacteria DNA were achieved using an equal volume of thermo-protection buffer (4 M KCl, 0.05 M HEPES buffer, pH 7.5, 0.1% dithiothreitol [DTT]). The buffer emulated intracellular conditions found in hyperthermophiles, thus protecting DNA from rapid thermodegradation, which renders it a poor template for sequencing. Initial validation experiments employed mycobacteria DNA, either extracted or intracellular. Next, mock clinical samples (infection-negative human sputum spiked with 0 to 105Mycobacterium bovis BCG cells/ml) underwent liquefaction in thermo-protection buffer and heat inactivation. DNA was extracted and sequenced. Human DNA degraded faster than mycobacteria DNA, resulting in target enrichment. Four replicate experiments achieved M. tuberculosis detection at 101 BCG cells/ml, with 31 to 59 M. tuberculosis complex reads. Maximal genome coverage (>97% at 5× depth) occurred at 104 BCG cells/ml; >91% coverage (1× depth) occurred at 103 BCG cells/ml. Final validation employed M. tuberculosis-positive clinical samples (n = 20), revealing that initial sample volumes of ≥1 ml typically yielded higher mean depths of M. tuberculosis genome coverage, with an overall range of 0.55 to 81.02. A mean depth of 3 gave >96% 1-fold tuberculosis (TB) genome coverage (in 15/20 clinical samples). A mean depth of 15 achieved >99% 5-fold genome coverage (in 9/20 clinical samples). In summary, direct-from-sample sequencing of M. tuberculosis genomes was facilitated by a low-cost thermo-protection buffer.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Sputum , Tuberculosis/diagnosis , Whole Genome Sequencing
10.
Wellcome Open Res ; 5: 139, 2020.
Article in English | MEDLINE | ID: mdl-33748431

ABSTRACT

Background: The COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices. Methods: We tested plasma for COVID (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142). Results: ELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar. Conclusions: Currently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms.

11.
EBioMedicine ; 43: 347-355, 2019 May.
Article in English | MEDLINE | ID: mdl-31036529

ABSTRACT

BACKGROUND: Clostridium difficile ribotype-027, ribotype-078, and ribotype-017 are virulent and epidemic lineages. Trehalose metabolism variants in these ribotypes, combined with increased human trehalose consumption, have been hypothesised to have contributed to their emergence and virulence. METHODS: 5232 previously whole-genome sequenced C. difficile isolates were analysed. Clinical isolates were used to investigate the impact of trehalose metabolism variants on mortality. Import data were used to estimate changes in dietary trehalose. Ribotype-027 virulence was investigated in a clinically reflective gut model. FINDINGS: Trehalose metabolism variants found in ribotype-027 and ribotype-017 were widely distributed throughout C. difficile clade-2 and clade-4 in 24/29 (83%) and 10/11 (91%) of sequence types (STs), respectively. The four-gene trehalose metabolism cluster described in ribotype-078 was common in genomes from all five clinically-important C. difficile clades (40/167 [24%] STs). The four-gene cluster was variably present in 208 ribotype-015 infections (98 [47%]); 27/208 (13%) of these patients died within 30-days of diagnosis. Adjusting for age, sex, and infecting ST, there was no association between 30-day all-cause mortality and the four-gene cluster (OR 0.36 [95%CI 0.09-1.34, p = 0.13]). Synthetic trehalose imports in the USA, UK, Germany and the EU were  < 1 g/capita/year during 2000-2006, and  < 9 g/capita/year 2007-2012, compared with dietary trehalose from natural sources of ~100 g/capita/year. Trehalose supplementation did not increase ribotype-027 virulence in a clinically-validated gut model. INTERPRETATION: Trehalose metabolism variants are common in C. difficile. Increases in total dietary trehalose during the early-mid 2000s C. difficile epidemic were likely relatively minimal. Alternative explanations are required to explain why ribotype-027, ribotype-078 and ribotype-017 have been successful. FUNDING: National Institute for Health Research. Gut model experiments only: Hayashibara Co. Ltd.


Subject(s)
Clostridioides difficile/classification , Clostridioides difficile/metabolism , Clostridium Infections/microbiology , Trehalose/metabolism , Aged , Aged, 80 and over , Carbohydrate Metabolism , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Clostridium Infections/epidemiology , Clostridium Infections/mortality , Female , Genome, Bacterial , Genomics/methods , Humans , Incidence , Male , Middle Aged , Odds Ratio , Phylogeny , Prognosis , Public Health Surveillance
12.
mBio ; 10(2)2019 03 12.
Article in English | MEDLINE | ID: mdl-30862754

ABSTRACT

The increasing clinical importance of human infections (frequently severe) caused by Clostridium difficile PCR ribotype 078 (RT078) was first reported in 2008. The severity of symptoms (mortality of ≤30%) and the higher proportion of infections among community and younger patients raised concerns. Farm animals, especially pigs, have been identified as RT078 reservoirs. We aimed to understand the recent changes in RT078 epidemiology by investigating a possible role for antimicrobial selection in its recent evolutionary history. Phylogenetic analysis of international RT078 genomes (isolates from 2006 to 2014, n = 400), using time-scaled, recombination-corrected, maximum likelihood phylogenies, revealed several recent clonal expansions. A common ancestor of each expansion had independently acquired a different allele of the tetracycline resistance gene tetM Consequently, an unusually high proportion (76.5%) of RT078 genomes were tetM positive. Multiple additional tetracycline resistance determinants were also identified (including efflux pump tet40), frequently sharing a high level of nucleotide sequence identity (up to 100%) with sequences found in the pig pathogen Streptococcus suis and in other zoonotic pathogens such as Campylobacter jejuni and Campylobacter coli Each RT078 tetM clonal expansion lacked geographic structure, indicating rapid, recent international spread. Resistance determinants for C. difficile infection-triggering antimicrobials, including fluoroquinolones and clindamycin, were comparatively rare in RT078. Tetracyclines are used intensively in agriculture; this selective pressure, plus rapid, international spread via the food chain, may explain the increased RT078 prevalence in humans. Our work indicates that the use of antimicrobials outside the health care environment has selected for resistant organisms, and in the case of RT078, has contributed to the emergence of a human pathogen.IMPORTANCEClostridium difficile PCR ribotype 078 (RT078) has multiple reservoirs; many are agricultural. Since 2005, this genotype has been increasingly associated with human infections in both clinical settings and the community. Investigations of RT078 whole-genome sequences revealed that tetracycline resistance had been acquired on multiple independent occasions. Phylogenetic analysis revealed a rapid, recent increase in numbers of closely related tetracycline-resistant RT078 (clonal expansions), suggesting that tetracycline selection has strongly influenced its recent evolutionary history. We demonstrate recent international spread of emergent, tetracycline-resistant RT078. A similar tetracycline-positive clonal expansion was also identified in unrelated nontoxigenic C. difficile, suggesting that this process may be widespread and may be independent of disease-causing ability. Resistance to typical C. difficile infection-associated antimicrobials (e.g., fluoroquinolones, clindamycin) occurred only sporadically within RT078. Selective pressure from tetracycline appears to be a key factor in the emergence of this human pathogen and the rapid international dissemination that followed, plausibly via the food chain.


Subject(s)
Animal Husbandry/methods , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/classification , Clostridioides difficile/drug effects , Genotype , Selection, Genetic , Tetracycline/pharmacology , Animals , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Evolution, Molecular , Molecular Epidemiology , Polymerase Chain Reaction , Ribotyping , Swine , Swine Diseases/epidemiology , Swine Diseases/microbiology
13.
Clin Infect Dis ; 67(7): 1035-1044, 2018 09 14.
Article in English | MEDLINE | ID: mdl-29659747

ABSTRACT

Background: Rates of Clostridium difficile infection vary widely across Europe, as do prevalent ribotypes. The extent of Europe-wide diversity within each ribotype, however, is unknown. Methods: Inpatient diarrheal fecal samples submitted on a single day in summer and winter (2012-2013) to laboratories in 482 European hospitals were cultured for C. difficile, and isolates the 10 most prevalent ribotypes were whole-genome sequenced. Within each ribotype, country-based sequence clustering was assessed using the ratio of the median number of single-nucleotide polymorphisms between isolates within versus across different countries, using permutation tests. Time-scaled Bayesian phylogenies were used to reconstruct the historical location of each lineage. Results: Sequenced isolates (n = 624) were from 19 countries. Five ribotypes had within-country clustering: ribotype 356, only in Italy; ribotype 018, predominantly in Italy; ribotype 176, with distinct Czech and German clades; ribotype 001/072, including distinct German, Slovakian, and Spanish clades; and ribotype 027, with multiple predominantly country-specific clades including in Hungary, Italy, Germany, Romania, and Poland. By contrast, we found no within-country clustering for ribotypes 078, 015, 002, 014, and 020, consistent with a Europe-wide distribution. Fluoroquinolone resistance was significantly more common in within-country clustered ribotypes (P = .009). Fluoroquinolone-resistant isolates were also more tightly clustered geographically with a median (interquartile range) of 43 (0-213) miles between each isolate and the most closely genetically related isolate, versus 421 (204-680) miles in nonresistant pairs (P < .001). Conclusions: Two distinct patterns of C. difficile ribotype spread were observed, consistent with either predominantly healthcare-associated acquisition or Europe-wide dissemination via other routes/sources, for example, the food chain.


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Cluster Analysis , Drug Resistance, Bacterial , Europe/epidemiology , Genetic Variation , Humans , Ribotyping
14.
PLoS One ; 12(8): e0182307, 2017.
Article in English | MEDLINE | ID: mdl-28813461

ABSTRACT

BACKGROUND: Approximately 30-40% of children <1 year of age are Clostridium difficile colonized, and may represent a reservoir for adult C. difficile infections (CDI). Risk factors for colonization with toxigenic versus non-toxigenic C. difficile strains and longitudinal acquisition dynamics in infants remain incompletely characterized. METHODS: Predominantly healthy infants (≤2 years) were recruited in Oxfordshire, UK, and provided ≥1 fecal samples. Independent risk factors for toxigenic/non-toxigenic C. difficile colonization and acquisition were identified using multivariable regression. Infant C. difficile isolates were whole-genome sequenced to assay genetic diversity and prevalence of toxin-associated genes, and compared with sequenced strains from Oxfordshire CDI cases. RESULTS: 338/365 enrolled infants provided 1332 fecal samples, representing 158 C. difficile colonization or carriage episodes (107[68%] toxigenic). Initial colonization was associated with age, and reduced with breastfeeding but increased with pet dogs. Acquisition was associated with older age, Caesarean delivery, and diarrhea. Breastfeeding and pre-existing C. difficile colonization reduced acquisition risk. Overall 13% of CDI C. difficile strains were genetically related to infant strains. 29(18%) infant C. difficile sequences were consistent with recent direct/indirect transmission to/from Oxfordshire CDI cases (≤2 single nucleotide variants [SNVs]); 79(50%) shared a common origin with an Oxfordshire CDI case within the last ~5 years (0-10 SNVs). The hypervirulent, epidemic ST1/ribotype 027 remained notably absent in infants in this large study, as did other lineages such as STs 10/44 (ribotype 015); the most common strain in infants was ST2 (ribotype 020/014)(22%). CONCLUSIONS: In predominantly healthy infants without significant healthcare exposure C. difficile colonization and acquisition reflect environmental exposures, with pet dogs identified as a novel risk factor. Genetic overlap between some infant strains and those isolated from CDI cases suggest common community reservoirs of these C. difficile lineages, contrasting with those lineages found only in CDI cases, and therefore more consistent with healthcare-associated spread.


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Carrier State/epidemiology , Clostridioides difficile/classification , Cluster Analysis , Cross Infection/epidemiology , Cross Infection/microbiology , DNA, Bacterial , Diarrhea/epidemiology , Diarrhea/microbiology , Evolution, Molecular , Feces/microbiology , Female , Genetic Variation , Humans , Infant , Infant, Newborn , Male , Prevalence , Risk Factors , Sequence Analysis, DNA , United Kingdom/epidemiology
16.
Lancet Infect Dis ; 17(4): 411-421, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28130063

ABSTRACT

BACKGROUND: The control of Clostridium difficile infections is an international clinical challenge. The incidence of C difficile in England declined by roughly 80% after 2006, following the implementation of national control policies; we tested two hypotheses to investigate their role in this decline. First, if C difficile infection declines in England were driven by reductions in use of particular antibiotics, then incidence of C difficile infections caused by resistant isolates should decline faster than that caused by susceptible isolates across multiple genotypes. Second, if C difficile infection declines were driven by improvements in hospital infection control, then transmitted (secondary) cases should decline regardless of susceptibility. METHODS: Regional (Oxfordshire and Leeds, UK) and national data for the incidence of C difficile infections and antimicrobial prescribing data (1998-2014) were combined with whole genome sequences from 4045 national and international C difficile isolates. Genotype (multilocus sequence type) and fluoroquinolone susceptibility were determined from whole genome sequences. The incidence of C difficile infections caused by fluoroquinolone-resistant and fluoroquinolone-susceptible isolates was estimated with negative-binomial regression, overall and per genotype. Selection and transmission were investigated with phylogenetic analyses. FINDINGS: National fluoroquinolone and cephalosporin prescribing correlated highly with incidence of C difficile infections (cross-correlations >0·88), by contrast with total antibiotic prescribing (cross-correlations <0·59). Regionally, C difficile decline was driven by elimination of fluoroquinolone-resistant isolates (approximately 67% of Oxfordshire infections in September, 2006, falling to approximately 3% in February, 2013; annual incidence rate ratio 0·52, 95% CI 0·48-0·56 vs fluoroquinolone-susceptible isolates: 1·02, 0·97-1·08). C difficile infections caused by fluoroquinolone-resistant isolates declined in four distinct genotypes (p<0·01). The regions of phylogenies containing fluoroquinolone-resistant isolates were short-branched and geographically structured, consistent with selection and rapid transmission. The importance of fluoroquinolone restriction over infection control was shown by significant declines in inferred secondary (transmitted) cases caused by fluoroquinolone-resistant isolates with or without hospital contact (p<0·0001) versus no change in either group of cases caused by fluoroquinolone-susceptible isolates (p>0·2). INTERPRETATION: Restricting fluoroquinolone prescribing appears to explain the decline in incidence of C difficile infections, above other measures, in Oxfordshire and Leeds, England. Antimicrobial stewardship should be a central component of C difficile infection control programmes. FUNDING: UK Clinical Research Collaboration (Medical Research Council, Wellcome Trust, National Institute for Health Research); NIHR Oxford Biomedical Research Centre; NIHR Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance (Oxford University in partnership with Public Health England [PHE]), and on Modelling Methodology (Imperial College, London in partnership with PHE); and the Health Innovation Challenge Fund.


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Cross Infection/prevention & control , Infection Control/methods , Anti-Bacterial Agents/therapeutic use , Clostridioides difficile/isolation & purification , Clostridium Infections/microbiology , Clostridium Infections/transmission , England/epidemiology , Fluoroquinolones/supply & distribution , Fluoroquinolones/therapeutic use , Genome-Wide Association Study , Humans , Incidence , Multilocus Sequence Typing/methods
17.
PLoS One ; 11(11): e0167042, 2016.
Article in English | MEDLINE | ID: mdl-27893790

ABSTRACT

The National Reference Centre for Staphylococci and Enterococci in Germany has received an increasing number of clinical linezolid-resistant E. faecium isolates in recent years. Five isolates harbored a cfr(B) variant gene locus the product of which is capable of conferring linezolid resistance. The cfr(B)-like methyltransferase gene was also detected in Clostridium difficile. Antimicrobial susceptibility was determined for cfr(B)-positive and linezolid-resistant E. faecium isolates and two isogenic C. difficile strains. All strains were subjected to whole genome sequencing and analyzed with respect to mutations in the 23S rDNA, rplC, rplD and rplV genes and integration sites of the cfr(B) variant locus. To evaluate methyltransferase function, the cfr(B) variant of Enterococcus and Clostridium was expressed in both E. coli and Enterococcus spp. Ribosomal target site mutations were detected in E. faecium strains but absent in clostridia. Sequencing revealed 99.9% identity between cfr(B) of Enterococcus and cfr of Clostridium. The methyltransferase gene is encoded by transposon Tn6218 which was present in C. difficile Ox3196, truncated in some E. faecium and absent in C. difficile Ox3206. The latter finding explains the lack of linezolid and chloramphenicol resistance in C. difficile Ox3206 and demonstrates for the first time a direct correlation of elevated linezolid MICs in C. difficile upon cfr acquisition. Tn6218 insertion sites revealed novel target loci for integration, both within the bacterial chromosome and as an integral part of plasmids. Importantly, the very first plasmid-association of a cfr(B) variant was observed. Although we failed to measure cfr(B)-mediated resistance in transformed laboratory strains the occurrence of the multidrug resistance gene cfr on putatively highly mobile and/or extrachromosomal DNA in clinical isolates is worrisome with respect to dissemination of antibiotic resistances.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/genetics , Genetic Variation/genetics , Gram-Positive Bacterial Infections/drug therapy , Linezolid/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Enterococcus faecium/isolation & purification , Genome, Bacterial , Gram-Positive Bacterial Infections/microbiology , Humans , Microbial Sensitivity Tests
18.
Environ Microbiol Rep ; 7(5): 782-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26109474

ABSTRACT

The contribution of wild birds as a source of human campylobacteriosis was investigated in Oxfordshire, United Kingdom (UK) over a 10 year period. The probable origin of human Campylobacter jejuni genotypes, as described by multilocus sequence typing, was estimated by comparison with reference populations of isolates from farm animals and five wild bird families, using the STRUCTURE algorithm. Wild bird-attributed isolates accounted for between 476 (2.1%) and 543 (3.5%) cases annually. This proportion did not vary significantly by study year (P = 0.934) but varied seasonally, with wild bird-attributed genotypes comprising a greater proportion of isolates during warmer compared with cooler months (P = 0.003). The highest proportion of wild bird-attributed illness occurred in August (P < 0.001), with a significantly lower proportion in November (P = 0.018). Among genotypes attributed to specific groups of wild birds, seasonality was most apparent for Turdidae-attributed isolates, which were absent during cooler, winter months. This study is consistent with some wild bird species representing a persistent source of campylobacteriosis, and contributing a distinctive seasonal pattern to disease burden. If Oxfordshire is representative of the UK as a whole in this respect, these data suggest that the national burden of wild bird-attributed isolates could be in the order of 10,000 annually.


Subject(s)
Birds/microbiology , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter jejuni/classification , Campylobacter jejuni/isolation & purification , Animals , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Genotype , Humans , Molecular Epidemiology , Multilocus Sequence Typing , Seasons , United Kingdom/epidemiology
19.
Genome Biol Evol ; 6(12): 3159-70, 2014 Nov 08.
Article in English | MEDLINE | ID: mdl-25381663

ABSTRACT

The symptoms of Clostridium difficile infection are caused by two closely related toxins, TcdA and TcdB, which are encoded by the 19.6 kb Pathogenicity Locus (PaLoc). The PaLoc is variably present among strains, and in this respect it resembles a mobile genetic element. The C. difficile population structure consists mainly of five phylogenetic clades designated 1-5. Certain genotypes of clade 5 are associated with recently emergent highly pathogenic strains causing human disease and animal infections. The aim of this study was to explore the evolutionary history of the PaLoc in C. difficile clade 5. Phylogenetic analyses and annotation of clade 5 PaLoc variants and adjoining genomic regions were undertaken using a representative collection of toxigenic and nontoxigenic strains. Comparison of the core genome and PaLoc phylogenies obtained for clade 5 and representatives of the other clades identified two distinct PaLoc acquisition events, one involving a toxin A(+)B(+) PaLoc variant and the other an A(-)B(+) variant. Although the exact mechanism of each PaLoc acquisition is unclear, evidence of possible homologous recombination with other clades and between clade 5 lineages was found within the PaLoc and adjacent regions. The generation of nontoxigenic variants by PaLoc loss via homologous recombination with PaLoc-negative members of other clades was suggested by analysis of cdu2, although none is likely to have occurred recently. A variant of the putative holin gene present in the clade 5 A(-)B(+) PaLoc was likely acquired via allelic exchange with an unknown element. Fine-scale phylogenetic analysis of C. difficile clade 5 revealed the extent of its genetic diversity, consistent with ancient evolutionary origins and a complex evolutionary history for the PaLoc.


Subject(s)
Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridioides difficile/genetics , Enterotoxins/genetics , Evolution, Molecular , Polymorphism, Genetic , Clostridioides difficile/pathogenicity , Homologous Recombination , Phylogeny , Virulence/genetics
20.
Health Technol Assess ; 18(53): 1-167, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25146932

ABSTRACT

BACKGROUND: Every year approximately 5000-9000 patients are admitted to a hospital with diarrhoea, which in up to 90% of cases has a non-infectious cause. As a result, single rooms are 'blocked' by patients with non-infectious diarrhoea, while patients with infectious diarrhoea are still in open bays because of a lack of free side rooms. A rapid test for differentiating infectious from non-infectious diarrhoea could be very beneficial for patients. OBJECTIVE: To evaluate MassCode multiplex polymerase chain reaction (PCR) for the simultaneous diagnosis of multiple enteropathogens directly from stool, in terms of sensitivity/specificity to detect four common important enteropathogens: Clostridium difficile, Campylobacter spp., Salmonella spp. and norovirus. DESIGN: A retrospective study of fixed numbers of samples positive for C. difficile (n = 200), Campylobacter spp. (n = 200), Salmonella spp. (n = 100) and norovirus (n = 200) plus samples negative for all these pathogens (n = 300). Samples were sourced from NHS microbiology laboratories in Oxford and Leeds where initial diagnostic testing was performed according to Public Health England methodology. Researchers carrying out MassCode assays were blind to this information. A questionnaire survey, examining current practice for infection control teams and microbiology laboratories managing infectious diarrhoea, was also carried out. SETTING: MassCode assays were carried out at Oxford University Hospitals NHS Trust. Further multiplex assays, carried out using Luminex, were run on the same set of samples at Leeds Teaching Hospitals NHS Trust. The questionnaire was completed by various NHS trusts. MAIN OUTCOME MEASURES: Sensitivity and specificity to detect C. difficile, Campylobacter spp., Salmonella spp., and norovirus. RESULTS: Nucleic acids were extracted from 948 clinical samples using an optimised protocol (200 Campylobacter spp., 199 C. difficile, 60 S. enterica, 199 norovirus and 295 negative samples; some samples contained more than one pathogen). Using the MassCode assay, sensitivities for each organism compared with standard microbiological testing ranged from 43% to 94% and specificities from 95% to 98%, with particularly poor performance for S. enterica. Relatively large numbers of unexpected positives not confirmed with quantitative PCR were also observed, particularly for S. enterica, Giardia lamblia and Cryptosporidium spp. As the results indicated that S. enterica detection might provide generic challenges to other multiplex assays for gastrointestinal pathogens, the Luminex xTag(®) gastrointestinal assay was also run blinded on the same extracts (937/948 remaining) and on re-extracted samples (839/948 with sufficient material). For Campylobacter spp., C. difficile and norovirus, high sensitivities (> 92%) and specificities (> 96%) were observed. For S. enterica, on the original MassCode/Oxford extracts, Luminex sensitivity compared with standard microbiological testing was 84% [95% confidence interval (CI) 73% to 93%], but this dropped to 46% on a fresh extract, very similar to MassCode, with a corresponding increase in specificity from 92% to 99%. Overall agreement on the per-sample diagnosis compared with combined microbiology plus PCR for the main four/all pathogens was 85.6%/64.7%, 87.0%/82.9% and 89.8%/86.8% for the MassCode assay, Luminex assay/MassCode extract and Luminex assay/fresh extract, respectively. Luminex assay results from fresh extracts implied that 5% of samples did not represent infectious diarrhoea, even though enteropathogens were genuinely present. Managing infectious diarrhoea was a significant burden for infection control teams (taking 21% of their time) and better diagnostics were identified as having major potential benefits for patients. CONCLUSIONS: Overall, the Luminex xTag gastrointestinal panel showed similar or superior sensitivity and specificity to the MassCode assay. However, on fresh extracts, this test had low sensitivity to detect a key enteric pathogen, S. enterica; making it an unrealistic option for most microbiology laboratories. Extraction efficiency appears to be a major obstacle for nucleic acid-based tests for this organism, and possibly the whole Enterobacteriaceae family. To improve workflows in service microbiology laboratories, to reduce workload for infection control practitioners, and to improve outcomes for NHS patients, further research on deoxyribonucleic acid-based multiplex gastrointestinal diagnostics is urgently needed. FUNDING: The Health Technology Assessment programme of the National Institute for Health Research.


Subject(s)
Cross Infection/prevention & control , Diarrhea/diagnosis , Diarrhea/microbiology , Hospitals, University/organization & administration , Infection Control/methods , Campylobacter/isolation & purification , Clostridioides difficile/isolation & purification , Cross Infection/microbiology , England , Feces , Humans , Immunoenzyme Techniques , Microbiological Techniques , Norovirus/isolation & purification , Polymerase Chain Reaction , Retrospective Studies , Salmonella/isolation & purification , Sensitivity and Specificity , State Medicine , Time Factors , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...