Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801371

ABSTRACT

A tailored series of coumarin-based ferrocenyl 1,3-oxazine hybrid compounds was synthesized and investigated for potential antiparasitic activity, drawing inspiration from the established biological efficacy of the constituent chemical motifs. The structural identity of the synthesized compounds was confirmed by common spectroscopic techniques: NMR, HRMS and IR. Biological evaluation studies reveal that the compounds exhibit higher in vitro antiparasitic potency against the chemosensitive malarial strain (3D7 P. falciparum) over the investigated trypanosomiasis causal agent (T. b. brucei 427) with mostly single digit micromolar IC50 values. When read in tandem with the biological performance of previously reported structurally similar non-coumarin, phenyl derivatives (i.e., ferrocenyl 1,3-benzoxazines and α-aminocresols), structure-activity relationship analyses suggest that the presence of the coumarin nucleus is tolerated for biological activity though this may lead to reduced efficacy. Preliminary mechanistic studies with the most promising compound (11b) support hemozoin inhibition and DNA interaction as likely mechanistic modalities by which this class of compounds may act to produce plasmocidal and antitrypanosomal effects.


Subject(s)
Antimalarials/pharmacology , Antiprotozoal Agents/pharmacology , Coumarins/chemistry , Ferrous Compounds/chemistry , Oxazines/chemistry , Plasmodium falciparum/drug effects , Trypanosoma brucei brucei/drug effects , Antimalarials/chemistry , Antiprotozoal Agents/chemistry , Cell Proliferation , Cell Survival , Female , Humans , In Vitro Techniques , Molecular Structure , Structure-Activity Relationship , Triple Negative Breast Neoplasms/drug therapy , Tumor Cells, Cultured
2.
J Biomol Struct Dyn ; 39(11): 4077-4088, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32462989

ABSTRACT

Deoxyribonucleic acid (DNA) and bovine serum albumin (BSA) binding interactions for a series of ruthenium heterocyclic complexes were monitored using ultraviolet-visible (UV-Vis) spectrophotometry, fluorescence emission spectroscopy and agarose gel electrophoresis. Investigations of the DNA interactions for the metal complexes revealed that they are groove-binders with intrinsic binding constants in the order of 104 - 107 M-1. Electronic spectrophotometric DNA titrations of the bis-heterocyclic metal complexes illustrated hypochromism of their intraligand electronic transitions and the presence of diffuse isosbestic points which are synonymous with homogeneous binding modes. Metal complexes with the mono-heterocyclic chelates also showed alterations in their intraligand transitions and changes in their metal-based electronic transitions which are suggestive of metal coordination to the CT-DNA structure. Using agarose gel electrophoresis assessments, Hoechst DNA binding competition studies corroborate that the metal complexes are DNA groove-binders. Optimal uptake of these metal complexes by BSA was observed based on their optimal apparent association and Stern-Volmer constants (Kapp and KSV > 104 M-1). Radical scavenging studies revealed that the metal complexes have high activities towards the neutralization of NO and DPPH radicals. Data attained from the BSA electronic spectrophotometric titrations for the majority of the metal complexes illustrated distinct hyperchromism accompanied with blue shifts which indicates unwinding of the protein strands. Predominately, the metal complexes showed moderate cytotoxicity against both triple-negative breast cancer and cervical cancer cell lines that was greater than that of 5-fluorouracil.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Coordination Complexes/pharmacology , DNA/metabolism , Humans , Protein Binding , Serum Albumin, Bovine/metabolism
3.
Chembiochem ; 21(18): 2643-2658, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32307798

ABSTRACT

The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , DNA, Fungal/drug effects , Hemeproteins/antagonists & inhibitors , Organometallic Compounds/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cresols/chemistry , Cresols/pharmacology , Drug Screening Assays, Antitumor , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Hemeproteins/metabolism , Humans , Metallocenes/chemistry , Metallocenes/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry
4.
Drug Chem Toxicol ; 43(6): 656-662, 2020 Nov.
Article in English | MEDLINE | ID: mdl-30880486

ABSTRACT

Metabolically induced drug-toxicity is a major cause of drug failure late in drug optimization phases. Accordingly, in vitro metabolic profiling of compounds is being introduced at earlier stages of the drug discovery pipeline. An increasingly common method to obtain these profiles is through overexpression of key CYP450 metabolic enzymes in immortalized liver cells, to generate competent hepatocyte surrogates. Enhanced cytotoxicity is presumed to be due to toxic metabolite production via the overexpressed enzyme. However, metabolically induced toxicity is a complex multi-parameter phenomenon and the potential background contribution to metabolism arising from the use of liver cells which endogenously express CYP450 isoforms is consistently overlooked. In this study, we sought to reduce the potential background interference by applying this methodology in kidney-derived HEK293 cells which lack endogenous CYP450 expression. Overexpression of CYP3A4 resulted in increased HEK293 proliferation, while exposure to four compounds with reported metabolically induced cytotoxicity in liver-derived cells overexpressing CYP3A4 resulted in no increase in cytotoxicity. Our results indicate that overexpression of a single CYP450 isoform in hepatic cell lines may not be a reliable method to discriminate which enzymes are responsible for metabolic induced cytotoxicity.


Subject(s)
Chlorpromazine/toxicity , Cytochrome P-450 CYP3A/metabolism , Epithelial Cells/drug effects , Labetalol/toxicity , Propranolol/toxicity , Rosiglitazone/toxicity , Activation, Metabolic , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorpromazine/metabolism , Cytochrome P-450 CYP3A/genetics , Epithelial Cells/enzymology , Epithelial Cells/pathology , HEK293 Cells , Humans , Labetalol/metabolism , Propranolol/metabolism , Risk Assessment , Rosiglitazone/metabolism , Substrate Specificity , Toxicity Tests
5.
Eur J Med Chem ; 187: 111924, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31855792

ABSTRACT

Cancer and malaria remain relevant pathologies in modern medicinal chemistry endeavours. This is compounded by the threat of development of resistance to existing clinical drugs in use as first-line option for treatment of these diseases. To counter this threat, strategies such as drug repurposing and hybridization are constantly adapted in contemporary drug discovery for the expansion of the drug arsenal and generation of novel chemotypes with potential to avert or delay resistance. In the present study, a polymer precursor scaffold, 1,3-benzoxazine, has been repurposed by incorporation of an organometallic ferrocene unit to produce a novel class of compounds showing in vitro biological activity against breast cancer, malaria and trypanosomiasis. The resultant ferrocenyl 1,3-benzoxazine compounds displayed high potency and selectivity against the investigated diseases, with IC50 values in the low and sub-micromolar range against both chloroquine-sensitive (3D7) and resistant (Dd2) strains of the Plasmodium falciparum parasite. On the other hand, antitrypanosomal (Trypanosoma brucei brucei) potencies were observed between 0.15 and 38.6 µM. The majority of the compounds were not active against breast cancer cells (HCC70), however, for the toxic compounds, IC50 values ranged from 11.0 to 30.5 µM. Preliminary structure-activity relationships revealed the basic oxazine sub-ring and lipophilic benzene substituents to be conducive for biological efficacy of the ferrocenyl 1,3-benzoxazines reported in the study. DNA interaction studies performed on the most promising compound 4c suggested that DNA damage may be one possible mode of action of this class of compounds.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Benzoxazines/pharmacology , Drug Repositioning , Plasmodium falciparum/drug effects , Polymers/pharmacology , Trypanosoma brucei brucei/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Dynamics Simulation , Molecular Structure , Parasitic Sensitivity Tests , Polymers/chemical synthesis , Polymers/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
6.
J Virol Methods ; 241: 46-51, 2017 03.
Article in English | MEDLINE | ID: mdl-28012897

ABSTRACT

Our laboratory was one of the first to engineer a live fluorescent tag, enhanced green fluorescent protein (eGFP), that marked the capsid of herpes simplex virus type 1 (HSV-1) and subsequently maturing virus as the particle made its way to the cell surface. In the present study we sought to increase the repertoire of colors available as fusion to the small capsid protein, VP26, so that they can be used alone or in conjunction with other fluorescent tags (fused to other HSV proteins) to follow the virus as it enters and replicates within the cell. We have now generated viruses expressing VP26 fusions with Cerulean, Venus, mOrange, tdTomato, mCherry, and Dronpa3 fluorescent proteins. These fusions were made in a repaired UL35 gene (VP26) background. These fusions do not affect the replication properties of the virus expressing the fusion polypeptide and the fusion tag was stably associated with intranuclear capsids and mature virions. Of note we could not isolate viruses expressing fusions with fluorescent proteins that have a tendency to dimerize.


Subject(s)
Capsid Proteins/genetics , Capsid Proteins/metabolism , Herpesvirus 1, Human/ultrastructure , Animals , Cell Line , Cell Membrane/genetics , Chlorocebus aethiops , Color , Fluorescent Dyes , Green Fluorescent Proteins , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Protein Engineering , Recombinant Fusion Proteins/chemistry , Vero Cells , Virus Replication , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...