Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 88(6): 2203-18, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27145075

ABSTRACT

The food habits of Melanogrammus aeglefinus were explored and contrasted across multiple north-eastern and north-western Atlantic Ocean ecosystems, using databases that span multiple decades. The results show that among all ecosystems, echinoderms are a consistent part of M. aeglefinus diet, but patterns emerge regarding where and when M. aeglefinus primarily eat fishes v. echinoderms. Melanogrammus aeglefinus does not regularly exhibit the increase in piscivory with ontogeny that other gadoids often show, and in several ecosystems there is a lower occurrence of piscivory. There is an apparent inverse relationship between the consumption of fishes and echinoderms in M. aeglefinus over time, where certain years show high levels of one prey item and low levels of the other. This apparent binary choice can be viewed as part of a gradient of prey options, contingent upon a suite of factors external to M. aeglefinus dynamics. The energetic consequences of this prey choice are discussed, noting that in some instances it may not be a choice at all.


Subject(s)
Behavior, Animal , Feeding Behavior , Gadiformes/physiology , Animals , Atlantic Ocean , Ecosystem , Food Chain
2.
Proc Biol Sci ; 279(1727): 275-83, 2012 Jan 22.
Article in English | MEDLINE | ID: mdl-21676978

ABSTRACT

Biological processes and physical oceanography are often integrated in numerical modelling of marine fish larvae, but rarely in statistical analyses of spatio-temporal observation data. Here, we examine the relative contribution of inter-annual variability in spawner distribution, advection by ocean currents, hydrography and climate in modifying observed distribution patterns of cod larvae in the Lofoten-Barents Sea. By integrating predictions from a particle-tracking model into a spatially explicit statistical analysis, the effects of advection and the timing and locations of spawning are accounted for. The analysis also includes other environmental factors: temperature, salinity, a convergence index and a climate threshold determined by the North Atlantic Oscillation (NAO). We found that the spatial pattern of larvae changed over the two climate periods, being more upstream in low NAO years. We also demonstrate that spawning distribution and ocean circulation are the main factors shaping this distribution, while temperature effects are different between climate periods, probably due to a different spatial overlap of the fish larvae and their prey, and the consequent effect on the spatial pattern of larval survival. Our new methodological approach combines numerical and statistical modelling to draw robust inferences from observed distributions and will be of general interest for studies of many marine fish species.


Subject(s)
Climate , Gadus morhua/physiology , Models, Biological , Water Movements , Animals , Gadus morhua/growth & development , Larva/physiology , Oceans and Seas , Population Dynamics , Reproduction , Seawater/chemistry , Sodium Chloride/analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...