Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Cancer Discov ; 14(4): 683-689, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571435

ABSTRACT

Research on precancers, as defined as at-risk tissues and early lesions, is of high significance given the effectiveness of early intervention. We discuss the need for risk stratification to prevent overtreatment, an emphasis on the role of genetic and epigenetic aging when considering risk, and the importance of integrating macroenvironmental risk factors with molecules and cells in lesions and at-risk normal tissues for developing effective intervention and health policy strategies.


Subject(s)
Precancerous Conditions , Humans , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Risk Factors
2.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38617269

ABSTRACT

Neutrophils accumulate early in tissue injury. However, the cellular and functional heterogeneity of neutrophils during homeostasis and in response to tissue damage remains unclear. Here, we use larval zebrafish to understand neutrophil responses to thermal injury. Single-cell transcriptional mapping of myeloid cells during a 3-day time course in burn and control larvae revealed distinct neutrophil subsets and their cell-cell interactions with macrophages across time and conditions. The trajectory formed by three zebrafish neutrophil subsets resembles human neutrophil maturation, with varying transition patterns between conditions. Through ligand-receptor cell-cell interaction analysis, we found neutrophils communicate more in burns in a pathway and temporal manner. Finally, we identified the correlation between zebrafish myeloid signatures and human burn severity, establishing GPR84+ neutrophils as a potential marker of early innate immune response in burns. This work builds the molecular foundation and a comparative single-cell genomic framework to identify neutrophil markers of tissue damage using model organisms.

3.
J Leukoc Biol ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38417030

ABSTRACT

Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration and phagocytosis. In contrast, other effector functions like NETosis and ROS production were reduced. PTP1B-deficient neutrophils were more responsive to A. fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine IL-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.

4.
iScience ; 27(3): 108990, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38384837

ABSTRACT

Most high-grade serous ovarian cancers (HGSCs) likely initiate from fallopian tube (FT) epithelia. While epithelial subtypes have been characterized using single-cell RNA-sequencing (scRNA-Seq), heterogeneity of other compartments and their involvement in tumor progression are poorly defined. Integrated analysis of human FT scRNA-Seq and HGSC-related tissues, including tumors, revealed greater immune and stromal transcriptional diversity than previously reported. We identified abundant monocytes in FTs across two independent cohorts. The ratio of macrophages to monocytes is similar between benign FTs, ovaries, and adjacent normal tissues but significantly greater in tumors. FT-defined monocyte and macrophage signatures, cell-cell communication, and gene set enrichment analyses identified monocyte- and macrophage-specific interactions and functional pathways in paired tumors and adjacent normal tissues. Further reanalysis of HGSC scRNA-Seq identified monocyte and macrophage subsets associated with neoadjuvant chemotherapy. Taken together, our work provides data that an altered FT myeloid cell composition could inform the discovery of early detection markers for HGSC.

5.
Front Immunol ; 14: 1224045, 2023.
Article in English | MEDLINE | ID: mdl-38022639

ABSTRACT

Purpose: Due to their abundance in the blood, low RNA content, and short lifespan, neutrophils have been classically considered to be one homogenous pool. However, recent work has found that mature neutrophils and neutrophil progenitors are composed of unique subsets exhibiting context-dependent functions. In this study, we ask if neutrophil heterogeneity is associated with melanoma incidence and/or disease stage. Experimental design: Using mass cytometry, we profiled melanoma patient blood for unique cell surface markers among neutrophils. Markers were tested for their predictiveness using flow cytometry data and random forest machine learning. Results: We identified CD79b+ neutrophils (CD3-CD56-CD19-Siglec8-CD203c-CD86LoCD66b+CD79b+) that are normally restricted to the bone marrow in healthy humans but appear in the blood of subjects with early-stage melanoma. Further, we found CD79b+ neutrophils present in tumors of subjects with head and neck cancer. AI-mediated machine learning analysis of neutrophils from subjects with melanoma confirmed that CD79b expression among peripheral blood neutrophils is highly important in identifying melanoma incidence. We noted that CD79b+ neutrophils possessed a neutrophilic appearance but have transcriptional and surface-marker phenotypes reminiscent of B cells. Compared to remaining blood neutrophils, CD79b+ neutrophils are primed for NETosis, express higher levels of antigen presentation-related proteins, and have an increased capacity for phagocytosis. Conclusion: Our work suggests that CD79b+ neutrophils are associated with early-stage melanoma.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Melanoma , Humans , Neutrophils , Antigens, CD19 , B-Lymphocytes
6.
Cancer Immunol Res ; 11(12): 1571-1577, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37906619

ABSTRACT

The Arthur and Sandra Irving Cancer Immunology Symposium has been created as a platform for established cancer immunologists to mentor trainees and young investigators as they launch their research career in the field. By sharing their different paths to success, the senior faculty mentors provide an invaluable resource to support the development of the next generation of leaders in the cancer immunology community. This Commentary describes some of the key topics that were discussed during the 2022 symposium: scientific and career trajectory, leadership, mentoring, collaborations, and publishing. For each of these topics, established investigators discussed the elements that facilitate success in these areas as well as mistakes that can hinder progress. Herein, we outline the critical points raised in these discussions for establishing a successful independent research career. These points are highly relevant for the broader scientific community.


Subject(s)
Mentoring , Neoplasms , Physicians , Humans , Mentors , Research Personnel , Neoplasms/therapy
7.
Cancers (Basel) ; 15(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835599

ABSTRACT

Low response rates in immune check-point blockade (ICB)-treated head and neck squamous cell carcinoma (HNSCC) drive a critical need for robust, clinically validated predictive biomarkers. Our group previously showed that stress keratin 17 (CK17) suppresses macrophage-mediated CXCL9/CXCL10 chemokine signaling involved in attracting activated CD8+ T cells into tumors, correlating with decreased response rate to pembrolizumab-based therapy in a pilot cohort of ICB-treated HNSCC (n = 26). Here, we performed an expanded analysis of the predictive value of CK17 in ICB-treated HNSCC according to the REMARK criteria and investigated the gene expression profiles associated with high CK17 expression. Pretreatment samples from pembrolizumab-treated HNSCC patients were stained via immunohistochemistry using a CK17 monoclonal antibody (n = 48) and subjected to spatial transcriptomic profiling (n = 8). Our findings were validated in an independent retrospective cohort (n = 22). CK17 RNA expression in pembrolizumab-treated patients with various cancer types was investigated for predictive significance. Of the 48 patients (60% male, median age of 61.5 years), 21 (44%) were CK17 high, and 27 (56%) were CK17 low. A total of 17 patients (35%, 77% CK17 low) had disease control, while 31 patients (65%, 45% CK17 low) had progressive disease. High CK17 expression was associated with a lack of disease control (p = 0.037), shorter time to treatment failure (p = 0.025), and progression-free survival (PFS, p = 0.004), but not overall survival (OS, p = 0.06). A high CK17 expression was associated with lack of disease control in an independent validation cohort (p = 0.011). PD-L1 expression did not correlate with CK17 expression or clinical outcome. CK17 RNA expression was predictive of PFS and OS in 552 pembrolizumab-treated cancer patients. Our findings indicate that high CK17 expression may predict resistance to ICB in HNSCC patients and beyond.

8.
Front Immunol ; 14: 1101497, 2023.
Article in English | MEDLINE | ID: mdl-37426658

ABSTRACT

CD8+ T cells drive anti-cancer immunity in response to antigen-presenting cells such as dendritic cells and subpopulations of monocytes and macrophages. While CD14+ classical monocytes modulate CD8+ T cell responses, the contributions of CD16+ nonclassical monocytes to this process remain unclear. Herein we explored the role of nonclassical monocytes in CD8+ T cell activation by utilizing E2-deficient (E2-/-) mice that lack nonclassical monocytes. During early metastatic seeding, modeled by B16F10-OVA cancer cells injected into E2-/- mice, we noted lower CD8+ effector memory and effector T cell frequencies within the lungs as well as in lung-draining mediastinal lymph nodes in the E2-/- mice. Analysis of the myeloid compartment revealed that these changes were associated with depletion of MHC-IIloLy6Clo nonclassical monocytes within these tissues, with little change in other monocyte or macrophage populations. Additionally, nonclassical monocytes preferentially trafficked to primary tumor sites in the lungs, rather than to the lung-draining lymph nodes, and did not cross-present antigen to CD8+ T cells. Examination of the lung microenvironment in E2-/- mice revealed reduced CCL21 expression in endothelial cells, which is chemokine involved in T cell trafficking. Our results highlight the previously unappreciated importance of nonclassical monocytes in shaping the tumor microenvironment via CCL21 production and CD8+ T cell recruitment.


Subject(s)
Monocytes , Neoplasms , Mice , Animals , CD8-Positive T-Lymphocytes , Endothelial Cells , Lung , Neoplasms/metabolism , Tumor Microenvironment
9.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37499656

ABSTRACT

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Subject(s)
Atherosclerosis , Complement C3 , Animals , Humans , Mice , Atherosclerosis/metabolism , Complement C3/genetics , Complement C3/metabolism , Complement Factor H/genetics , Complement Factor H/metabolism , Inflammation , Macrophages/metabolism
10.
Proc Natl Acad Sci U S A ; 120(20): e2301137120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155881

ABSTRACT

Homeostatic trafficking to lymph nodes allows T cells to efficiently survey the host for cognate antigen. Nonmammalian jawed vertebrates lack lymph nodes but maintain diverse T cell pools. Here, we exploit in vivo imaging of transparent zebrafish to investigate how T cells organize and survey for antigen in an animal devoid of lymph nodes. We find that naïve-like T cells in zebrafish organize into a previously undescribed whole-body lymphoid network that supports streaming migration and coordinated trafficking through the host. This network has the cellular hallmarks of a mammalian lymph node, including naïve T cells and CCR7-ligand expressing nonhematopoietic cells, and facilitates rapid collective migration. During infection, T cells transition to a random walk that supports antigen-presenting cell interactions and subsequent activation. Our results reveal that T cells can toggle between collective migration and individual random walks to prioritize either large-scale trafficking or antigen search in situ. This lymphoid network thus facilitates whole-body T cell trafficking and antigen surveillance in the absence of a lymph node system.


Subject(s)
T-Lymphocytes , Zebrafish , Animals , Lymph Nodes , Antigen-Presenting Cells , Antigens , Cell Movement , Mammals , Zebrafish Proteins , Receptors, CCR7
11.
bioRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711463

ABSTRACT

Homeostatic trafficking to lymph nodes allows T cells to efficiently survey the host for cognate antigen. Non-mammalian jawed vertebrates lack lymph nodes but maintain similarly diverse T cell pools. Here, we exploit in vivo imaging of transparent zebrafish to investigate how T cells organize and survey for antigen in an animal devoid of lymph nodes. We find that naïve-like T cells in zebrafish organize into a previously undescribed whole-body lymphoid network that supports streaming migration and coordinated trafficking through the host. This network has the cellular hallmarks of a mammalian lymph node, including naïve T cells and CCR7-ligand expressing non-hematopoietic cells, and facilitates rapid collective migration. During infection, T cells transition to a random walk that supports antigen presenting cell interactions and subsequent activation. Our results reveal that T cells can toggle between collective migration and individual random walks to prioritize either large-scale trafficking or antigen search in situ . This novel lymphoid network thus facilitates whole-body T cell trafficking and antigen surveillance in the absence of a lymph node system. Significance Statement: In mammals, lymph nodes play a critical role in the initiation of adaptive immune responses by providing a dedicated place for T cells to scan antigen-presenting cells. Birds, reptiles, amphibians, and fish all maintain diverse repertoires of T cells but lack lymph nodes, raising questions about how adaptive immunity functions in lower jawed vertebrates. Here, we describe a novel network of lymphocytes in zebrafish that supports whole-body T cell trafficking and provides a site for antigen search, mirroring the function of mammalian lymph nodes. Within this network, T cells can prioritize large-scale trafficking or antigen scanning by toggling between two distinct modes of migration. This network provides valuable insights into the evolution of adaptive immunity.

12.
Nat Genet ; 55(2): 255-267, 2023 02.
Article in English | MEDLINE | ID: mdl-36624343

ABSTRACT

Endometriosis is a common condition in women that causes chronic pain and infertility and is associated with an elevated risk of ovarian cancer. We profiled transcriptomes of >370,000 individual cells from endometriomas (n = 8), endometriosis (n = 28), eutopic endometrium (n = 10), unaffected ovary (n = 4) and endometriosis-free peritoneum (n = 4), generating a cellular atlas of endometrial-type epithelial cells, stromal cells and microenvironmental cell populations across tissue sites. Cellular and molecular signatures of endometrial-type epithelium and stroma differed across tissue types, suggesting a role for cellular restructuring and transcriptional reprogramming in the disease. Epithelium, stroma and proximal mesothelial cells of endometriomas showed dysregulation of pro-inflammatory pathways and upregulation of complement proteins. Somatic ARID1A mutation in epithelial cells was associated with upregulation of pro-angiogenic and pro-lymphangiogenic factors and remodeling of the endothelial cell compartment, with enrichment of lymphatic endothelial cells. Finally, signatures of ciliated epithelial cells were enriched in ovarian cancers, reinforcing epidemiologic associations between these two diseases.


Subject(s)
Endometriosis , Transcriptome , Humans , Female , Transcriptome/genetics , Endometriosis/genetics , Endometriosis/metabolism , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Epithelium
13.
J Leukoc Biol ; 112(5): 1053-1063, 2022 11.
Article in English | MEDLINE | ID: mdl-35866369

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in severe immune dysfunction, hospitalization, and death. Many patients also develop long-COVID-19, experiencing symptoms months after infection. Although significant progress has been made in understanding the immune response to acute SARS-CoV-2 infection, gaps remain in our knowledge of how innate immunity influences disease kinetics and severity. We hypothesized that cytometry by time-of-flight analysis of PBMCs from healthy and infected subjects would identify novel cell surface markers and innate immune cell subsets associated with COVID-19 severity. In this pursuit, we identified monocyte and dendritic cell subsets that changed in frequency during acute SARS-CoV-2 infection and correlated with clinical parameters of disease severity. Subsets of nonclassical monocytes decreased in frequency in hospitalized subjects, yet increased in the most severe patients and positively correlated with clinical values associated with worse disease severity. CD9, CD163, PDL1, and PDL2 expression significantly increased in hospitalized subjects, and CD9 and 6-Sulfo LacNac emerged as the markers that best distinguished monocyte subsets amongst all subjects. CD9+ monocytes remained elevated, whereas nonclassical monocytes remained decreased, in the blood of hospitalized subjects at 3-4 months postinfection. Finally, we found that CD9+ monocytes functionally released more IL-8 and MCP-1 after LPS stimulation. This study identifies new monocyte subsets present in the blood of COVID-19 patients that correlate with disease severity, and links CD9+ monocytes to COVID-19 progression.


Subject(s)
COVID-19 , Humans , Monocytes , SARS-CoV-2 , Interleukin-8/metabolism , Lipopolysaccharides/metabolism , Myeloid Cells , Hospitalization , Tetraspanin 29/metabolism , Post-Acute COVID-19 Syndrome
14.
Clin Cancer Res ; 28(13): 2953-2968, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35621713

ABSTRACT

PURPOSE: We investigated whether in human head and neck squamous cell carcinoma (HNSCC) high levels of expression of stress keratin 17 (K17) are associated with poor survival and resistance to immunotherapy. EXPERIMENTAL DESIGN: We investigated the role of K17 in regulating both the tumor microenvironment and immune responsiveness of HNSCC using a syngeneic mouse HNSCC model, MOC2. MOC2 gives rise to immunologically cold tumors that are resistant to immune-checkpoint blockade (ICB). We engineered multiple, independent K17 knockout (KO) MOC2 cell lines and monitored their growth and response to ICB. We also measured K17 expression in human HNSCC of patients undergoing ICB. RESULTS: MOC2 tumors were found to express K17 at high levels. When knocked out for K17 (K17KO MOC2), these cells formed tumors that grew slowly or spontaneously regressed and had a high CD8+ T-cell infiltrate in immunocompetent syngeneic C57BL/6 mice compared with parental MOC2 tumors. This phenotype was reversed when we depleted mice for T cells. Whereas parental MOC2 tumors were resistant to ICB treatment, K17KO MOC2 tumors that did not spontaneously regress were eliminated upon ICB treatment. In a cohort of patients with HNSCC receiving pembrolizumab, high K17 expression correlated with poor response. Single-cell RNA-sequencing analysis revealed broad differences in the immune landscape of K17KO MOC2 tumors compared with parental MOC2 tumors, including differences in multiple lymphoid and myeloid cell types. CONCLUSIONS: We demonstrate that K17 expression in HNSCC contributes to immune evasion and resistance to ICB treatment by broadly altering immune landscapes of tumors.


Subject(s)
Head and Neck Neoplasms , Keratin-17 , Keratins/metabolism , Animals , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Immune Checkpoint Inhibitors , Immune Evasion , Mice , Mice, Inbred C57BL , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment/genetics
15.
Front Immunol ; 13: 842653, 2022.
Article in English | MEDLINE | ID: mdl-35493454

ABSTRACT

Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related deaths globally. Immune checkpoint blockade (ICB) has transformed cancer medicine, with anti-programmed cell death protein 1 (anti-PD-1) therapy now well-utilized for treating NSCLC. Still, not all patients with NSCLC respond positively to anti-PD-1 therapy, and some patients acquire resistance to treatment. There remains an urgent need to find markers predictive of anti-PD-1 responsiveness. To this end, we performed mass cytometry on peripheral blood mononuclear cells from 26 patients with NSCLC during anti-PD-1 treatment. Patients who responded to anti-PD-1 ICB displayed significantly higher levels of antigen-presenting myeloid cells, including CD9+ nonclassical monocytes, and CD33hi classical monocytes. Using matched pre-post treatment samples, we found that the baseline pre-treatment frequencies of CD33hi monocytes predicted patient responsiveness to anti-PD-1 therapy. Moreover, some of these classical and nonclassical monocyte subsets were associated with reduced immunosuppression by T regulatory (CD4+FOXP3+CD25+) cells in the same patients. Our use of machine learning corroborated the association of specific monocyte markers with responsiveness to ICB. Our work provides a high-dimensional profile of monocytes in NSCLC and links CD33 expression on monocytes with anti-PD-1 effectiveness in patients with NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Immunotherapy/methods , Leukocytes, Mononuclear/pathology , Monocytes/pathology , Sialic Acid Binding Ig-like Lectin 3
16.
PLoS Pathog ; 18(4): e1010453, 2022 04.
Article in English | MEDLINE | ID: mdl-35472072

ABSTRACT

Humans are infected with two types of EBV (Type 1 (T1) and Type 2 (T2)) that differ substantially in their EBNA2 and EBNA 3A/B/C latency proteins and have different phenotypes in B cells. T1 EBV transforms B cells more efficiently than T2 EBV in vitro, and T2 EBV-infected B cells are more lytic. We previously showed that both increased NFATc1/c2 activity, and an NFAT-binding motif within the BZLF1 immediate-early promoter variant (Zp-V3) contained in all T2 strains, contribute to lytic infection in T2 EBV-infected B cells. Here we compare cellular and viral gene expression in early-passage lymphoblastoid cell lines (LCLs) infected with either T1 or T2 EBV strains. Using bulk RNA-seq, we show that T2 LCLs are readily distinguishable from T1 LCLs, with approximately 600 differentially expressed cellular genes. Gene Set Enrichment Analysis (GSEA) suggests that T2 LCLs have increased B-cell receptor (BCR) signaling, NFAT activation, and enhanced expression of epithelial-mesenchymal-transition-associated genes. T2 LCLs also have decreased RNA and protein expression of a cellular gene required for survival of T1 LCLs, IRF4. In addition to its essential role in plasma cell differentiation, IRF4 decreases BCR signaling. Knock-down of IRF4 in a T1 LCL (infected with the Zp-V3-containing Akata strain) induced lytic reactivation whereas over-expression of IRF4 in Burkitt lymphoma cells inhibited both NFATc1 and NFATc2 expression and lytic EBV reactivation. Single-cell RNA-seq confirmed that T2 LCLs have many more lytic cells compared to T1 LCLs and showed that lytically infected cells have both increased NFATc1, and decreased IRF4, compared to latently infected cells. These studies reveal numerous differences in cellular gene expression in B cells infected with T1 versus T2 EBV and suggest that decreased IRF4 contributes to both the latent and lytic phenotypes in cells with T2 EBV.


Subject(s)
B-Lymphocytes , Burkitt Lymphoma , Herpesvirus 4, Human , Interferon Regulatory Factors , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , B-Lymphocytes/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/virology , Herpesvirus 4, Human/metabolism , Humans , Interferon Regulatory Factors/metabolism , Phenotype , Viral Proteins/metabolism
17.
Bioinformatics ; 38(5): 1287-1294, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34864849

ABSTRACT

MOTIVATION: RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3' bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3' 10× Genomics is currently performed at the gene level. RESULTS: We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods. AVAILABILITY AND IMPLEMENTATION: Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Gene Expression Profiling , Software , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA
18.
Nat Commun ; 12(1): 7335, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921160

ABSTRACT

The tumor microenvironment is a highly complex ecosystem of diverse cell types, which shape cancer biology and impact the responsiveness to therapy. Here, we analyze the microenvironment of esophageal squamous cell carcinoma (ESCC) using single-cell transcriptome sequencing in 62,161 cells from blood, adjacent nonmalignant and matched tumor samples from 11 ESCC patients. We uncover heterogeneity in most cell types of the ESCC stroma, particularly in the fibroblast and immune cell compartments. We identify a tumor-specific subset of CST1+ myofibroblasts with prognostic values and potential biological significance. CST1+ myofibroblasts are also highly tumor-specific in other cancer types. Additionally, a subset of antigen-presenting fibroblasts is revealed and validated. Analyses of myeloid and T lymphoid lineages highlight the immunosuppressive nature of the ESCC microenvironment, and identify cancer-specific expression of immune checkpoint inhibitors. This work establishes a rich resource of stromal cell types of the ESCC microenvironment for further understanding of ESCC biology.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Profiling , Single-Cell Analysis , Tumor Microenvironment/genetics , Antigen Presentation , Biomarkers, Tumor/metabolism , Dendritic Cells/metabolism , Esophageal Neoplasms/immunology , Esophageal Squamous Cell Carcinoma/immunology , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class II/metabolism , Humans , Myeloid Cells/metabolism , Myofibroblasts/pathology , Prognosis , Salivary Cystatins/metabolism , Survival Analysis , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology
19.
Arterioscler Thromb Vasc Biol ; 41(9): 2387-2398, 2021 09.
Article in English | MEDLINE | ID: mdl-34320835

ABSTRACT

Objective: CD4 T cells are important regulators of atherosclerotic progression. The metabolic profile of CD4 T cells controls their signaling and function, but how atherosclerosis affects T-cell metabolism is unknown. Here, we sought to determine the impact of atherosclerosis on CD4 T-cell metabolism and the contribution of such metabolic alterations to atheroprogression. Approach and Results: Using PCR arrays, we profiled the expression of metabolism genes in CD4 T cells from atherosclerotic apolipoprotein-E knockout mice fed a Western diet. These cells exhibited dysregulated expression of genes critically involved in glycolysis and fatty acid degradation, compared with those from animals fed a standard laboratory diet. We examined how T-cell metabolism was changed in either Western diet­fed apolipoprotein-E knockout mice or samples from patients with cardiovascular disease by measuring glucose uptake, activation, and proliferation in CD4 T cells. We found that naive CD4 T cells from Western diet­fed apolipoprotein-E knockout mice failed to uptake glucose and displayed impaired proliferation and activation, compared with CD4 T cells from standard laboratory diet­fed animals. Similarly, we observed that naive CD4 T-cell frequencies were reduced in the circulation of human subjects with high cardiovascular disease compared with low cardiovascular disease. Naive T cells from high cardiovascular disease subjects also showed reduced proliferative capacity. Conclusions: These results highlight the dysfunction that occurs in CD4 T-cell metabolism and immune responses during atherosclerosis. Targeting metabolic pathways within naive CD4 T cells could thus yield novel therapeutic approaches for improving CD4 T-cell responses against atheroprogression.


Subject(s)
Atherosclerosis/metabolism , CD4-Positive T-Lymphocytes/metabolism , Glycolysis , Plaque, Atherosclerotic , Aged , Animals , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cells, Cultured , Diet, Western , Disease Models, Animal , Fatty Acids/metabolism , Female , Gene Expression Regulation , Glycolysis/genetics , Humans , Lymphocyte Activation , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Middle Aged , Oxidation-Reduction , Phenotype
20.
Biomed Res Int ; 2021: 8734615, 2021.
Article in English | MEDLINE | ID: mdl-33977109

ABSTRACT

This study was conducted to evaluate the routine medical check-up and self-treatment behaviors of people living in a remote and mountainous setting in Northern Vietnam and identify their associations. A cross-sectional study was conducted on 175 people in August 2018 in Cao Son commune, Da Bac district, Hoa Binh. Information regarding routine medical check-ups and self-treatment behaviors was collected by using a structured questionnaire. Multivariate logistic regression was used to examine the associations. Results show that 24% of the mountainous people had routine medical check-ups in the last 12 months. The rate of self-treatment in the past three months was 33.7%. The number of chronic diseases (OR = 1.5, 95% CI = 1.0-2.3), health information sources from radio/television (OR = 3.3, 95% CI = 1.2-9.5), or social media (OR = 24.8, 95% CI = 1.2-512.4) was related to routine medical check-up. People who did not have routine medical check-up were more likely to have self-treatment practice (OR = 6.3, 95% CI = 1.9-21.1) than those who had a regular health check. Promoting health education and communication through mass media to raise people's awareness about regular health check-ups is a promising way to improve people's self-treatment status.


Subject(s)
Physical Examination/statistics & numerical data , Rural Population/statistics & numerical data , Self Care/statistics & numerical data , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Health Education , Health Services Accessibility/statistics & numerical data , Humans , Independent Living , Male , Middle Aged , Vietnam , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...