Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1623: 461130, 2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32505268

ABSTRACT

The interactions and dynamic behavior of a select set of polar probe solutes have been investigated on three hydrophilic and polar commercial stationary phases using saturation transfer difference 1H nuclear magnetic resonance (STD-NMR) spectroscopy under magic angle spinning conditions. The stationary phases were equilibrated with a select set of polar solutes expected to show different interaction patterns in mixtures of deuterated acetonitrile and deuterium oxide, with ammonium acetate added to a total concentration that mimics typical eluent conditions for hydrophilic interaction chromatography (HILIC). The methylene groups of the stationary phases were selectively irradiated to saturate the ligand protons, at frequencies that minimized the overlaps with reporting protons in the test probes. During and after this radiation, the saturation rapidly spreads to all protons in the stationary phase by spin diffusion, and from those to probe protons in contact with the stationary phase. Probe protons that have been in close contact with the stationary phase and subsequently been released to the solution phase will have been more saturated due to a more efficient transfer of spin polarization by the nuclear Overhauser effect. They will therefore show a higher signal after processing of the data. Saturation transfers to protons in neutral and charged solutes could in some instances show clear orientation patterns of these solutes towards the stationary phases. The saturation profile of formamide and its N-methylated counterparts showed patterns that could be interpreted as oriented hydrogen bond interaction. From these studies, it is evident that the functional groups on the phase surface have a strong contribution to the selectivity in HILIC, and that the retention mechanism has a significant contribution from oriented interactions.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy/methods , Benzoic Acid/chemistry , Dimethylformamide/chemistry , Hydrogen-Ion Concentration , Quaternary Ammonium Compounds/chemistry , Static Electricity
2.
J Chromatogr A ; 1588: 58-67, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30704776

ABSTRACT

Toluene has been used as void volume (zero retention) marker since the inception of hydrophilic interaction chromatography (HILIC), based on the assumption that its hydrophobicity should prevent it from interacting with stationary phases envisioned to be covered by relatively thick layers of water. Recent work has shown that the void volumes of partly water-swollen HILIC phases are not identical to the volumes probed by toluene, yet the compound is still ubiquitously used as void volume marker. As part of our investigations of the retention mechanisms in HILIC, we probed the extent to which toluene is capable of penetrating into the water-enriched layer and to interact with the functional groups of three commercially available hydrophilic and polar stationary phases with different charge properties and water-retaining abilities, using saturation transfer difference 1H nuclear magnetic resonance (STD-NMR) spectroscopy at high resolution magic angle spinning (HR-MAS) conditions. The test solutions were 1000 ppm of toluene in deuterated acetonitrile and water mixtures, with and without addition of ammonium acetate, in order to mimic a set of conditions typically encountered in HILIC separations. Interactions between toluene and the functional groups on the stationary phases were probed by equilibrating the phases with these eluent mimics and measuring the transfer of magnetization from stationary phase protons to the protons of toluene. Our results show that toluene is indeed capable of traversing the water-enriched layers of all the three tested phases and of interacting with protons that are tightly associated with the stationary phases.


Subject(s)
Magnetic Resonance Spectroscopy , Toluene/chemistry , Acetates/chemistry , Chromatography , Hydrophobic and Hydrophilic Interactions , Water/chemistry
3.
J Chromatogr A ; 1320: 33-47, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24200388

ABSTRACT

Since water associated with the stationary phase surface appears to be the essence of the retention mechanism in hydrophilic interaction chromatography (HILIC), we developed a method to characterize the water-absorbing capabilities of twelve different HILIC stationary phases. Adsorption isotherms for non-modified and monomerically functionalized silica phases adhered to a pattern of monolayer formation followed by multilayer adsorption, whereas water uptake on polymerically functionalized silica stationary phases showed the characteristics of formation and swelling of hydrogels. Water accumulation was affected by adding ammonium acetate as buffer electrolyte and by replacing 5% of the acetonitrile with tertiary solvents capable of hydrogen bonding such as methanol or tetrahydrofuran. The relationship between water uptake and retention mechanism was investigated by studying the correlations between retention factors of neutral analytes and the phase ratios of HILIC columns, calculated either from the surface area (adsorption) or the volume of the water layer enriched from the acetonitrile/water eluent (partitioning). These studies made it evident that adsorption and partitioning actually coexist as retention promoters for neutral solutes in the water concentration regime normally encountered in HILIC. Which factors that dominates is dependent on the nature of the solute, the stationary phase, and the eluting conditions.


Subject(s)
Chromatography, Liquid/instrumentation , Water/chemistry , Adsorption , Buffers , Surface Properties
4.
J Sep Sci ; 35(12): 1502-5, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22740260

ABSTRACT

Both poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) and poly(4-methylstyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolithic columns have been hypercrosslinked and for the first time used to achieve capillary electrochromatographic separations. Although these columns do not contain ionizable functionalities, electroosmotic flow was observed due to adsorption of ions from a buffer solution contained in the mobile phase on the surface of the hydrophobic polymer. An increase of more than one order of magnitude was observed with the use of both monolithic polymers. The hypercrosslinking reaction creates a large surface area thus enabling adsorption of a much larger number of ions. Alkylbenzenes were successfully separated using the hypercrosslinked monolithic columns.


Subject(s)
Benzene/chemistry , Capillary Electrochromatography/instrumentation , Polymers/chemistry , Adsorption , Capillary Electrochromatography/methods , Ions , Porosity , Resins, Synthetic/chemistry
5.
J Chromatogr A ; 1218(35): 5880-91, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21803363

ABSTRACT

This work aims at characterizing interactions between a select set of probes and 22 hydrophilic and polar commercial stationary phases, to develop an understanding of the relationship between the chemical properties of those phases and their interplay with the eluent and solutes in hydrophilic interaction chromatography. "Hydrophilic interaction" is a somewhat inexact term, and an attempt was therefore made to characterize the interactions involved in HILIC as hydrophilic, hydrophobic, electrostatic, hydrogen bonding, dipole-dipole, π-π interaction, and shape-selectivity. Each specific interaction was quantified from the separation factors of a pair of similar substances of which one had properties promoting the interaction mode being probed while the other did not. The effects of particle size and pore size of the phases on retention and selectivity were also studied. The phases investigated covered a wide range of surface functional groups including zwitterionic (sulfobetaine and phosphocholine), neutral (amide and hydroxyl), cationic (amine), and anionic (sulfonic acid and silanol). Principal component analysis of the data showed that partitioning was a dominating mechanism for uncharged solutes in HILIC. However, correlations between functional groups and interactions were also observed, which confirms that the HILIC retention mechanism is partly contributed by adsorption mechanisms involving electrostatic interaction and multipoint hydrogen bonding. Phases with smaller pore diameters yielded longer retention of solutes, but did not significantly change the column selectivities. The particle diameter had no significant effect, neither on retention, nor on the selectivities. An increased water content in the eluent reduced the multipoint hydrogen bonding interactions, while an increased electrolyte concentration lowered the selectivities of the tested columns and made their interaction patterns more similar.


Subject(s)
Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Hydrogen Bonding , Ions/chemistry , Least-Squares Analysis , Particle Size , Porosity , Principal Component Analysis , Static Electricity
6.
J Sep Sci ; 33(11): 1563-70, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20432486

ABSTRACT

A combined surface activation and "grafting to" strategy was developed to convert divinylbenzene particles into weak cation exchangers suitable for protein separation. The initial activation step was based on plasma modification with bromoform, which rendered the particles amenable to further reaction with nucleophiles by introducing Br to a surface content of 11.2 atom-%, as determined by X-ray photoelectron spectroscopy. Grafting of thiol-terminated glydicyl methacrylate telomers to freshly plasma activated surfaces was accomplished without the use of added initiator, and the grafting was verified both by reduction in bromine content and the appearance of sulfur-carbon linkages, showing that the surface grafts were covalently bonded. Following grafting the attached glydicyl methacrylate telomer tentacles were further modified by a two-step procedure involving hydrolysis to 2,3-hydroxypropyl groups and conversion of hydroxyl groups to carboxylate functionality by succinic anhydride. The final material was capable of baseline separating four model proteins in 3 min by gradient cation exchange chromatography in a fully aqueous eluent.

7.
J Sep Sci ; 32(15-16): 2556-64, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19670274

ABSTRACT

Macroporous epoxy-based monoliths prepared by emulsion polymerization have been modified for use in ion exchange chromatography (IEC) of proteins. Strong anion exchange functionality was established by iodomethane quaternization of tertiary amine present on the monolith surface as a part of the polymer backbone. The modification pathway to cation exchange materials was via incorporation of glycidyl methacrylate (GMA) brushes which were coated using atom transfer radical polymerization (ATRP). Strong (SO(3)(-)) and weak (COO(-)) cation exchange groups were thereafter introduced onto the GMA-grafted monoliths by reactions with sodium hydrogen sulfite and iminodiacetic acid, respectively. Grafting was confirmed by XPS, gravimetric measurement, and chromatographic behavior of the modified materials toward model proteins. In incubation experiments the proteins were recovered quantitatively with no obvious signs of unfolding after contact with the stationary phase for >2 h. Chromatographic assessments on the functionalized columns as well as problems associated with flow-through modification by ATRP are discussed.


Subject(s)
Chromatography, Ion Exchange/instrumentation , Epoxy Resins/chemistry , Polymers/chemistry , Proteins/isolation & purification , Amines/chemistry , Bromides/chemistry , Chromatography, Ion Exchange/methods , Methacrylates/chemistry , Molecular Structure
8.
J Sep Sci ; 32(15-16): 2608-18, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19670275

ABSTRACT

This paper presents further results from our efforts to prepare sizable macroporous monolithic materials from epoxy resins and polyamines by emulsion polymerization. For their uses as supports in flow systems, the study aimed at developing materials possessing maximum fluid permeability, high mechanical stability, and a controlled porosity and surface area. Characterization of the materials has been carried out using different techniques, focusing on morphological and mechanical features, and on the surface chemistry. Morphology and porosity were studied with SEM, nitrogen adsorption/desorption, mercury intrusion porosimetry (MIP), and (2)H NMR cryoporosimetry. The chemical composition of the bulk structures and their surfaces was studied by means of bulk elemental analysis and X-ray photoelectron spectroscopy, and potentiometric titration was used to assess the relative amounts of amines and epoxy groups. Essentially, the morphological features were a high fluid permeability, but rather low specific surface area. Convective flow was facilitated by large, interconnected, and evenly spaced macropores which were formed by nonporous skeletons of the connected-rod type. Despite the interfacial nature of the polymerization, the bulk and the surface of the fully cured materials showed similar elemental compositions. All materials were found to have a high surface density of hydroxyl groups, which facilitates functionalization reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...