Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 15: 1331959, 2024.
Article in English | MEDLINE | ID: mdl-38558818

ABSTRACT

Introduction: Immune checkpoint inhibitor-induced inflammatory arthritis (ICI-IA) poses a major clinical challenge to ICI therapy for cancer, with 13% of cases halting ICI therapy and ICI-IA being difficult to identify for timely referral to a rheumatologist. The objective of this study was to rapidly identify ICI-IA patients in clinical data and assess associated immune-related adverse events (irAEs) and risk factors. Methods: We conducted a retrospective study of the electronic health records (EHRs) of 89 patients who developed ICI-IA out of 2451 cancer patients who received ICI therapy at Northwestern University between March 2011 to January 2021. Logistic regression and random forest machine learning models were trained on all EHR diagnoses, labs, medications, and procedures to identify ICI-IA patients and EHR codes indicating ICI-IA. Multivariate logistic regression was then used to test associations between ICI-IA and cancer type, ICI regimen, and comorbid irAEs. Results: Logistic regression and random forest models identified ICI-IA patients with accuracies of 0.79 and 0.80, respectively. Key EHR features from the random forest model included ICI-IA relevant features (joint pain, steroid prescription, rheumatoid factor tests) and features suggesting comorbid irAEs (thyroid function tests, pruritus, triamcinolone prescription). Compared to 871 adjudicated ICI patients who did not develop arthritis, ICI-IA patients had higher odds of developing cutaneous (odds ratio [OR]=2.66; 95% Confidence Interval [CI] 1.63-4.35), endocrine (OR=2.09; 95% CI 1.15-3.80), or gastrointestinal (OR=2.88; 95% CI 1.76-4.72) irAEs adjusting for demographics, cancer type, and ICI regimen. Melanoma (OR=1.99; 95% CI 1.08-3.65) and renal cell carcinoma (OR=2.03; 95% CI 1.06-3.84) patients were more likely to develop ICI-IA compared to lung cancer patients. Patients on nivolumab+ipilimumab were more likely to develop ICI-IA compared to patients on pembrolizumab (OR=1.86; 95% CI 1.01-3.43). Discussion: Our machine learning models rapidly identified patients with ICI-IA in EHR data and elucidated clinical features indicative of comorbid irAEs. Patients with ICI-IA were significantly more likely to also develop cutaneous, endocrine, and gastrointestinal irAEs during their clinical course compared to ICI therapy patients without ICI-IA.


Subject(s)
Antineoplastic Agents, Immunological , Arthritis , Kidney Neoplasms , Melanoma , Humans , Antineoplastic Agents, Immunological/therapeutic use , Retrospective Studies , Arthritis/drug therapy , Melanoma/drug therapy , Kidney Neoplasms/drug therapy
2.
Ann Thorac Surg ; 113(2): 654-662, 2022 02.
Article in English | MEDLINE | ID: mdl-33359720

ABSTRACT

BACKGROUND: Repair of complete atrioventricular canal (CAVC) is often complicated by atrioventricular valve regurgitation, particularly of the left-sided valve. Understanding the 3-dimensional (3D) structure of the atrioventricular canal annulus before repair may help to inform optimized repair. However, the 3D shape and movement of the CAVC annulus has been neither quantified nor rigorously compared with a normal mitral valve annulus. METHODS: The complete annuli of 43 patients with CAVC were modeled in 4 cardiac phases using transthoracic 3D echocardiograms and custom code. The annular structure was compared with the annuli of 20 normal pediatric mitral valves using 3D metrics and statistical shape analysis (Procrustes analysis). RESULTS: The unrepaired CAVC annulus varied in shape significantly throughout the cardiac cycle. Procrustes analysis visually demonstrated that the average normalized CAVC annular shape is more planar than the normal mitral annulus. Quantitatively, the annular height-to-valve width ratio of the native left CAVC atrioventricular valve was significantly lower than that of a normal mitral valve in all systolic phases (P < .001). CONCLUSIONS: The left half of the CAVC annulus is more planar than that of a normal mitral valve with an annular height-to-valve width ratio similar to dysfunctional mitral valves. Given the known importance of annular shape to mitral valve function, further exploration of the association of 3D structure to valve function in CAVC is warranted.


Subject(s)
Cardiac Surgical Procedures/methods , Echocardiography, Three-Dimensional/methods , Echocardiography, Transesophageal/methods , Heart Septal Defects/surgery , Child, Preschool , Female , Heart Septal Defects/diagnosis , Humans , Infant , Male , Retrospective Studies
3.
Catheter Cardiovasc Interv ; 93(3): E143-E152, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30444053

ABSTRACT

BACKGROUND: Pulmonary insufficiency is a consequence of transannular patch repair in Tetralogy of Fallot (ToF) leading to late morbidity and mortality. Transcatheter native outflow tract pulmonary valve replacement has become a reality. However, predicting a secure, atraumatic implantation of a catheter-based device remains a significant challenge due to the complex and dynamic nature of the right ventricular outflow tract (RVOT). We sought to quantify the differences in compression and volume for actual implants, and those predicted by pre-implant modeling. METHODS: We used custom software to interactively place virtual transcatheter pulmonary valves (TPVs) into RVOT models created from pre-implant and post Harmony valve implant CT scans of 5 ovine surgical models of TOF to quantify and visualize device volume and compression. RESULTS: Virtual device placement visually mimicked actual device placement and allowed for quantification of device volume and radius. On average, simulated proximal and distal device volumes and compression did not vary statistically throughout the cardiac cycle (P = 0.11) but assessment was limited by small sample size. In comparison to actual implants, there was no significant pairwise difference in the proximal third of the device (P > 0.80), but the simulated distal device volume was significantly underestimated relative to actual device implant volume (P = 0.06). CONCLUSIONS: This study demonstrates that pre-implant modeling which assumes a rigid vessel wall may not accurately predict the degree of distal RVOT expansion following actual device placement. We suggest the potential for virtual modeling of TPVR to be a useful adjunct to procedural planning, but further development is needed.


Subject(s)
Cardiac Catheterization/instrumentation , Cardiac Surgical Procedures/adverse effects , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis , Models, Cardiovascular , Patient-Specific Modeling , Pulmonary Valve Insufficiency/surgery , Pulmonary Valve/surgery , Tetralogy of Fallot/surgery , Animals , Cardiac Catheterization/adverse effects , Heart Valve Prosthesis Implantation/adverse effects , Hemodynamics , Humans , Models, Animal , Prosthesis Design , Pulmonary Valve/diagnostic imaging , Pulmonary Valve/physiopathology , Pulmonary Valve Insufficiency/diagnostic imaging , Pulmonary Valve Insufficiency/etiology , Pulmonary Valve Insufficiency/physiopathology , Sheep, Domestic , Tomography, X-Ray Computed , Treatment Outcome
5.
J Thorac Cardiovasc Surg ; 150(5): 1268-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26293548

ABSTRACT

OBJECTIVES: The clinical translation of cell-based therapies for ischemic heart disease has been limited because of low cell retention (<1%) within, and poor targeting to, ischemic myocardium. To address these issues, we developed an injectable hyaluronic acid (HA) shear-thinning hydrogel (STG) and endothelial progenitor cell (EPC) construct (STG-EPC). The STG assembles as a result of interactions of adamantine- and ß-cyclodextrin-modified HA. It is shear-thinning to permit delivery via a syringe, and self-heals upon injection within the ischemic myocardium. This directed therapy to the ischemic myocardial border zone enables direct cell delivery to address adverse remodeling after myocardial infarction. We hypothesize that this system will enhance vasculogenesis to improve myocardial stabilization in the context of a clinically translatable therapy. METHODS: Endothelial progenitor cells (DiLDL(+) VEGFR2(+) CD34(+)) were harvested from adult male rats, cultured, and suspended in the STG. In vitro viability was quantified using a live-dead stain of EPCs. The STG-EPC constructs were injected at the border zone of ischemic rat myocardium after acute myocardial infarction (left anterior descending coronary artery ligation). The migration of the enhanced green fluorescent proteins from the construct to ischemic myocardium was analyzed using fluorescent microscopy. Vasculogenesis, myocardial remodeling, and hemodynamic function were analyzed in 4 groups: control (phosphate buffered saline injection); intramyocardial injection of EPCs alone; injection of the STG alone; and treatment with the STG-EPC construct. Hemodynamics and ventricular geometry were quantified using echocardiography and Doppler flow analysis. RESULTS: Endothelial progenitor cells demonstrated viability within the STG. A marked increase in EPC engraftment was observed 1-week postinjection within the treated myocardium with gel delivery, compared with EPC injection alone (17.2 ± 0.8 cells per high power field (HPF) vs 3.5 cells ± 1.3 cells per HPF, P = .0002). A statistically significant increase in vasculogenesis was noted with the STG-EPC construct (15.3 ± 5.8 vessels per HPF), compared with the control (P < .0001), EPC (P < .0001), and STG (P < .0001) groups. Statistically significant improvements in ventricular function, scar fraction, and geometry were noted after STG-EPC treatment compared with the control. CONCLUSIONS: A novel injectable shear-thinning HA hydrogel seeded with EPCs enhanced cell retention and vasculogenesis after delivery to ischemic myocardium. This therapy limited adverse myocardial remodeling while preserving contractility.


Subject(s)
Endothelial Progenitor Cells/transplantation , Hyaluronic Acid/chemistry , Myocardial Ischemia/surgery , Myocardium/pathology , Regeneration , Tissue Scaffolds , Animals , Cell Movement , Cell Survival , Cells, Cultured , Disease Models, Animal , Echocardiography, Doppler , Endothelial Progenitor Cells/metabolism , Fibrosis , Genes, Reporter , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Hydrogels , Male , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Myocardium/metabolism , Neovascularization, Physiologic , Rats, Wistar , Recovery of Function , Time Factors , Transfection , Ventricular Function, Left , Ventricular Pressure , Ventricular Remodeling , beta-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...