Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36315540

ABSTRACT

Stochastic algorithms are well-known for their performance in the era of big data. In this article, we study nonsmooth stochastic Difference-of-Convex functions (DC) programs-the major class of nonconvex stochastic optimization, which have a variety of applications in divers domains, in particular, machine learning. We propose new online stochastic algorithms based on the state-of-the-art DC Algorithm (DCA)-a powerful approach in nonconvex programming framework, in the online context of streaming data continuously generated by some (unknown) source distribution. The new schemes use the stochastic approximations (SAs) principle: deterministic quantities of the standard DCA are replaced by their noisy estimators constructed using newly arriving samples. The convergence analysis of the proposed algorithms is studied intensively with the help of tools from modern convex analysis and martingale theory. Finally, we study several aspects of the proposed algorithms on an important problem in machine learning: the expected problem in principal component analysis (PCA).

2.
Neural Comput ; 29(11): 3040-3077, 2017 11.
Article in English | MEDLINE | ID: mdl-28957024

ABSTRACT

This letter proposes a novel approach using the [Formula: see text]-norm regularization for the sparse covariance matrix estimation (SCME) problem. The objective function of SCME problem is composed of a nonconvex part and the [Formula: see text] term, which is discontinuous and difficult to tackle. Appropriate DC (difference of convex functions) approximations of [Formula: see text]-norm are used that result in approximation SCME problems that are still nonconvex. DC programming and DCA (DC algorithm), powerful tools in nonconvex programming framework, are investigated. Two DC formulations are proposed and corresponding DCA schemes developed. Two applications of the SCME problem that are considered are classification via sparse quadratic discriminant analysis and portfolio optimization. A careful empirical experiment is performed through simulated and real data sets to study the performance of the proposed algorithms. Numerical results showed their efficiency and their superiority compared with seven state-of-the-art methods.

3.
Neural Comput ; 28(6): 1163-216, 2016 06.
Article in English | MEDLINE | ID: mdl-27136704

ABSTRACT

In this letter, we consider the nonnegative matrix factorization (NMF) problem and several NMF variants. Two approaches based on DC (difference of convex functions) programming and DCA (DC algorithm) are developed. The first approach follows the alternating framework that requires solving, at each iteration, two nonnegativity-constrained least squares subproblems for which DCA-based schemes are investigated. The convergence property of the proposed algorithm is carefully studied. We show that with suitable DC decompositions, our algorithm generates most of the standard methods for the NMF problem. The second approach directly applies DCA on the whole NMF problem. Two algorithms-one computing all variables and one deploying a variable selection strategy-are proposed. The proposed methods are then adapted to solve various NMF variants, including the nonnegative factorization, the smooth regularization NMF, the sparse regularization NMF, the multilayer NMF, the convex/convex-hull NMF, and the symmetric NMF. We also show that our algorithms include several existing methods for these NMF variants as special versions. The efficiency of the proposed approaches is empirically demonstrated on both real-world and synthetic data sets. It turns out that our algorithms compete favorably with five state-of-the-art alternating nonnegative least squares algorithms.

4.
Neural Comput ; 26(12): 2827-54, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25248085

ABSTRACT

Automatic discovery of community structures in complex networks is a fundamental task in many disciplines, including physics, biology, and the social sciences. The most used criterion for characterizing the existence of a community structure in a network is modularity, a quantitative measure proposed by Newman and Girvan (2004). The discovery community can be formulated as the so-called modularity maximization problem that consists of finding a partition of nodes of a network with the highest modularity. In this letter, we propose a fast and scalable algorithm called DCAM, based on DC (difference of convex function) programming and DCA (DC algorithms), an innovative approach in nonconvex programming framework for solving the modularity maximization problem. The special structure of the problem considered here has been well exploited to get an inexpensive DCA scheme that requires only a matrix-vector product at each iteration. Starting with a very large number of communities, DCAM furnishes, as output results, an optimal partition together with the optimal number of communities [Formula: see text]; that is, the number of communities is discovered automatically during DCAM's iterations. Numerical experiments are performed on a variety of real-world network data sets with up to 4,194,304 nodes and 30,359,198 edges. The comparative results with height reference algorithms show that the proposed approach outperforms them not only on quality and rapidity but also on scalability. Moreover, it realizes a very good trade-off between the quality of solutions and the run time.


Subject(s)
Algorithms , Community Networks , Models, Theoretical , Humans
5.
Neural Comput ; 25(10): 2776-807, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23777526

ABSTRACT

We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.


Subject(s)
Algorithms , Cluster Analysis , Artificial Intelligence , Brain Neoplasms/pathology , Computer Simulation , Databases, Factual , Fuzzy Logic , Humans , Lung Neoplasms/pathology , Neoplasms/pathology , Problem Solving , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...