Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Western Pac Surveill Response J ; 12(3): 47-55, 2021.
Article in English | MEDLINE | ID: mdl-34703635

ABSTRACT

OBJECTIVE: To determine whether environmental surface contamination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred at a provincial hospital in Viet Nam that admitted patients with novel coronavirus disease 2019 (COVID-19) and at the regional reference laboratory responsible for confirmatory testing for SARS-CoV-2 in 2020. METHODS: Environmental samples were collected from patient and staff areas at the hospital and various operational and staff areas at the laboratory. Specimens from frequently touched surfaces in all rooms were collected using a moistened swab rubbed over a 25 cm2 area for each surface. The swabs were immediately transported to the laboratory for testing by real-time reverse transcription polymerase chain reaction (RT-PCR). Throat specimens were collected from staff at both locations and were also tested for SARS-CoV-2 using real-time RT-PCR. RESULTS: During the sampling period, the laboratory tested 6607 respiratory specimens for SARS-CoV-2 from patients within the region, and the hospital admitted 9 COVID-19 cases. Regular cleaning was conducted at both sites in accordance with infection prevention and control (IPC) practices. All 750 environmental samples (300 laboratory and 450 hospital) and 30 staff specimens were negative for SARS-CoV-2. DISCUSSION: IPC measures at the facilities may have contributed to the negative results from the environmental samples. Other possible explanations include sampling late in a patient's hospital stay when virus load was lower, having insufficient contact time with a surface or using insufficiently moist collection swabs. Further environmental sampling studies of SARS-CoV-2 should consider including testing for the environmental presence of viruses within laboratory settings, targeting the collection of samples to early in the course of a patient's illness and including sampling of confirmed positive control surfaces, while maintaining appropriate biosafety measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Laboratories , Vietnam/epidemiology
2.
Nanomaterials (Basel) ; 8(10)2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30262760

ABSTRACT

In this study, the effects of nanosecond-pulsed laser and pattern design were researched on the wettability of titanium material. Nanosecond-pulsed laser and heat treatment are used to fabricate superhydrophobic titanium surfaces. The effects of laser power (1⁻3 W) and step size (50⁻300 µm) on a microscale patterned titanium surface (line pattern and grid pattern) were investigated to explain the relation between microstructure and superhydrophobicity. The surface morphologies and wettability of the surfaces were analyzed by three-dimensional confocal microscopy and a contact angle meter. The results show that the laser power and pattern design affected the apparent contact angle (CA) and sliding angle (SA). The maximum step size, which could show superhydrophobicity with apparent CA > 150° and SA < 10°, was increased when the laser power increased from 1 to 3 W. Grid pattern showed isotropic wetting behavior, but line pattern showed both isotropic and anisotropic wetting behavior according to step size and laser power. Furthermore, when choosing the proper laser power and step size, the wetting properties of superhydrophobic surface such as lotus effect (apparent CA > 150° and SA < 10°) and petal effect (apparent CA > 150° and no SA) and isotropic/anisotropic behavior can be controlled for applications of water droplet control.

SELECTION OF CITATIONS
SEARCH DETAIL
...