Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 258: 119396, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871276

ABSTRACT

Adsorption of essential amino acid, Tryptophan (Tryp) on synthesized gibbsite nanoparticles and their applications in eliminating of antibiotic ciprofloxacin (CFX) and bacteria Escherichia coli (E. coli) in aqueous solution. Nano-gibbsite which was successfully fabricated, was characterized by XRD, TEM-SAED, FT-IR, SEM-EDX and zeta potential measurements. The selected parameters for Tryp adsorption on nano-gibbsite to form biomaterial, Tryp/gibbsite were pH 11, gibbsite dosage 20 mg/mL and 1400 mg/L Tryp. The optimum conditions for CFX removal using Tryp/gibbsite were adsorption time 60 min, pH 5, and 20 mg/mL Tryp/gibbsite dosage. The CFX removal significantly raised from 63 to 90% when using Tryp/gibbsite. The Freundlich and pseudo-second-order models achieved the best fits for CFX adsorption isotherm and kinetic on Tryp/gibbsite, respectively. The amount of CFX increased with increasing ionic strength, suggesting that both electrostatic and non-electrostatic interactions were important. After four reused time, CFX removal was greater than 66%, demonstrating that Tryp/gibbsite is reusable with high performance in removing CFX. The application in bacterial activity in term of E. coli reached greater than 98% that was the best material for bacteria inactivation. The present study reveals that Tryp/gibbsite is an excellent bio-material for removing CFX and E. coli.

2.
ACS Omega ; 7(46): 42073-42082, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36440119

ABSTRACT

A novel core-shell nanomaterial, ZnO@SiO2, based on rice husk for antibiotic and bacteria removal, was successfully fabricated. The ZnO@SiO2 nanoparticles were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), photoluminescence spectroscopy (PL), Brunauer-Emmett-Teller (BET) method, diffuse reflectance ultraviolet-vis (DR-UV-vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and ζ-potential measurements. ß-Lactam antibiotic amoxicillin (AMX) was removed using ZnO@SiO2 nanoparticles with an efficiency greater than 90%, while Escherichia coli removal was higher than 91%. The optimum effective conditions for AMX removal using ZnO@SiO2, including solution pH, adsorption time, and ZnO@SiO2 dosage, were 8, 90 min, and 25 mg/mL, respectively. The maximum adsorption capacity reached 52.1 mg/g, much higher than those for other adsorbents. Adsorption isotherms of AMX on ZnO@SiO2 were more in accordance with the Freundlich model than the Langmuir model. The electrostatic attraction between negative species of AMX and the positively charged ZnO@SiO2 surface induced adsorption, while the removal of E. coli was governed by both electrostatic and hydrophobic interactions. Our study demonstrates that ZnO@SiO2 based on rice husk is a useful core-shell nanomaterial for antibiotic and bacteria removal from water.

3.
Environ Res ; 210: 112943, 2022 07.
Article in English | MEDLINE | ID: mdl-35176314

ABSTRACT

This study aims to investigate the adsorption characteristics of cationic surfactant, cetyltrimethylamonium bromide (CTAB) onto negatively nanosilica rice husk surface and the application for antibiotic treatment in water environment. Adsorption of CTAB onto nanosilica increased with an increase of solution pH, due to an enhancement of the electrostatic attraction between cationic methylamomethylamonium groups and negatively charged nanosilica surface enhanced at higher pH. Adsorption of CTAB decreased with a decrease of ionic strength while a common intersection point (CIP) was observed for adsorption isotherm at different ionic strengths, suggesting that hydrophobic interactions between alkyl chains in CTAB molecules significantly induced adsorption and admicelles with bilayer formation were dominant than monolayer of hemimicelles. The CTAB functionalized nanosilica (CFNS) was applied for removal of beta-lactam amoxicillin (AMX). The best conditions for AMX treatment using CFNS were selected as pH 10, contact time 60 min and CFNS dosage 10 mg/mL. Removal efficiency of AMX using CFNS reached to 100% under optimum conditions while it was only 25.01% using nanosilica without CTAB. The maximum AMX adsorption capacity using CFNS of about 25 mg/g was much higher than other adsorbents. The effects of different organics such as humic acid, anionic surfactant, and other antibiotics on AMX removal using CFNS were also studied. A two-step model can fit CTAB uptake isotherms onto nanosilica and AMX onto CFNS well at different KCl concentrations. Based on the desorption of CTAB with AMX adsorption as well as adsorption isotherms, the change in surface charge and functional vibration groups after adsorption, we indicate that AMX adsorption onto CFNS was mainly controlled by electrostatic interaction. We reveal that CFNS is an excellent adsorbent for antibiotic treatment from aqueous solution.


Subject(s)
Oryza , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Cetrimonium , Kinetics , Surface-Active Agents , Water/chemistry , Water Pollutants, Chemical/analysis , beta-Lactams
4.
J Anal Methods Chem ; 2021: 5526882, 2021.
Article in English | MEDLINE | ID: mdl-34035973

ABSTRACT

A method for the simultaneous determination of seven B-group vitamers including thiamine, riboflavin, nicotinamide, niacin, pyridoxine, pyridoxal, and pyridoxamine in nutritional products by using enzymatic digestion followed by LC-MS/MS quantification was studied. The LC-MS/MS conditions such as MS transitions, mobile phase programs, and ammonium formate buffer concentrations, and sample treatment procedures (e.g., concentrations of buffer solution, digestion temperature, and digestion time) were investigated. The analytical method performance was evaluated by multiple criteria such as selectivity, linearity, detection and quantification limits, repeatability, reproducibility, and recovery by using real sample matrices. The validated method was successfully applied to analyze vitamin B concentrations in different nutritional products like ultra-heat-treated milk, powdered milk, and nutritional powder. Vitamin B concentrations varied over a wide range from lower than detection limits to about 9000 µg/100 g, depending on vitamin groups, compound forms, and sample types. The measured concentrations of B-group vitamins in our samples were generally in good agreement with values of label claims.

5.
J Anal Methods Chem ; 2020: 6676320, 2020.
Article in English | MEDLINE | ID: mdl-33489415

ABSTRACT

The objective of the present study is to investigate removal of cationic dye, rhodamine B (RhB), in water environment using a high-performance absorbent based on metal oxide nanomaterials toward green chemistry. The adsorption of sodium dodecyl sulfate (SDS) onto synthesized alpha alumina (α-Al2O3) material (M0) at different ionic strengths under low pH was studied to fabricate a new adsorbent as SDS-modified α-Al2O3 material (M1). The RhB removal using M1 was much higher than M0 under the same experimental conditions. The optimal conditions for RhB removal using M1 were found to be contact time 30 min, pH 4, and adsorbent dosage 5 mg/mL. The maximum RhB removal using M1 achieved 100%, and adsorption amount reached 52.0 mg/g. Adsorption isotherms of RhB onto M1 were well fitted by the two-step adsorption model. The electrostatic attraction between positive RhB molecules and negatively charged M1 surface controlled the adsorption that was evaluated by the surface charge change with zeta potential and adsorption isotherms. Very high RhB removal of greater than 98% after four regenerations of M1 and the maximum removal for all actual textile wastewater samples demonstrate that SDS-modified nano α-Al2O3 is a high-performance and reusable material for RhB removal from wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...