Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817443

ABSTRACT

In the present work, five 2-styryl-1-benzopyrylium salts and their relative self-assembly processes towards TiO2 nanocrystalline layers were evaluated as photosensitizers in dye-sensitized solar cells (DSSCs). Integration of these 2-styryl-1-benzopyrylium salts with the semiconductor allow for the performance of highly specific functions suitable for smart applications in material science. Spectroscopic and photoelectrochemical measurements conducted on these five bio-inspired dyes, in solution and upon adsorption onto titanium dioxide films, allowed detailed discussion of the anchoring ability of the different donor groups decorating the 2-styryl-1-benzopyrylium core and have demonstrated their ability as photosensitizers. Our results suggest that the introduction of a dimethylamino group in position 4' of the 2-styryl-1-benzopyrylium skeleton can alter the conjugation of the molecule leading to larger absorption in the visible region and a stronger electron injection of the dye into the conduction band of TiO2. Moreover, our experimental data have been supported by theoretical calculations with the aim to study the energy of the excited states of the five compounds. In this specific case, the simulations reported contributed to better describe the properties of the compounds used and to help create the necessary basis for the design of new and targeted bio-inspired molecules.

2.
Faraday Discuss ; 185: 361-79, 2015.
Article in English | MEDLINE | ID: mdl-26395804

ABSTRACT

A multistate molecular dyad containing flavylium and viologen units was synthesized and the pH dependent thermodynamics of the network completely characterized by a variety of spectroscopic techniques such as NMR, UV-vis and stopped-flow. The flavylium cation is only stable at acidic pH values. Above pH ≈ 5 the hydration of the flavylium leads to the formation of the hemiketal followed by ring-opening tautomerization to give the cis-chalcone. Finally, this last species isomerizes to give the trans-chalcone. For the present system only the flavylium cation and the trans-chalcone species could be detected as being thermodynamically stable. The hemiketal and the cis-chalcone are kinetic intermediates with negligible concentrations at the equilibrium. All stable species of the network were found to form 1 : 1 and 2 : 1 host : guest complexes with cucurbit[7]uril (CB7) with association constants in the ranges 10(5)-10(8) M(-1) and 10(3)-10(4) M(-1), respectively. The 1 : 1 complexes were particularly interesting to devise pH responsive bistable pseudorotaxanes: at basic pH values (≈12) the flavylium cation interconverts into the deprotonated trans-chalcone in a few minutes and under these conditions the CB7 wheel was found to be located around the viologen unit. A decrease in pH to values around 1 regenerates the flavylium cation in seconds and the macrocycle is translocated to the middle of the axle. On the other hand, if the pH is decreased to 6, the deprotonated trans-chalcone is neutralized to give a metastable species that evolves to the thermodynamically stable flavylium cation in ca. 20 hours. By taking advantage of the pH-dependent kinetics of the trans-chalcone/flavylium interconversion, spatiotemporal control of the molecular organization in pseudorotaxane systems can be achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...