Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Toxicon ; 56(7): 1172-80, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20417652

ABSTRACT

In the current study, the putative cDNA for PnTx2-6 toxin of the Phoneutria nigriventer spider venom was cloned and expressed as tioredoxin fusion protein in the cytoplasm of Escherichia coli. The fusion protein was purified from the bacterial extracts by combination of immobilized Ni-ion affinity and gel filtration chromatographies. Then, it was cleaved by enterokinase and the generated recombinant PnTx2-6 (rPnTx2-6) was further purified by reverse-phase HPLC. Likewise the native toxin purified from the spider venom, rPnTx2-6 potentiates the erectile function when injected in rats. This result indicates that the production of functional recombinant PnTx2-6 might be an alternative to provide this basic and valuable tool for study, as well as for further understanding such complex physiological system, including its correlation with the central nervous system and local tissue factors.


Subject(s)
Penile Erection/drug effects , Peptides/pharmacology , Spider Venoms/pharmacology , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Escherichia coli/genetics , Injections, Subcutaneous , Male , Molecular Sequence Data , Peptides/administration & dosage , Peptides/isolation & purification , Priapism/chemically induced , Rats , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Spider Venoms/administration & dosage , Spider Venoms/isolation & purification
2.
Genetics ; 173(2): 877-889, 2006.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063093

ABSTRACT

Efforts to describe toxins from the two major families of venomous snakes (Viperidae and Elapidae) usually reveal proteins belonging to few structural types, particular of each family. Here we carried on an effort to determine uncommon cDNAs that represent possible new toxins from Lachesis muta (Viperidae). In addition to nine classes of typical toxins, atypical molecules never observed in the hundreds of Viperidae snakes studied so far are highly expressed: a diverging C-type lectin that is related to Viperidae toxins but appears to be independently originated; an ohanin-like toxin, which would be the third member of the most recently described class of Elapidae toxins, related to human butyrophilin and B30.2 proteins; and a 3FTx-like toxin, a new member of the widely studied three-finger family of proteins, which includes major Elapidae neurotoxins and CD59 antigen. The presence of these common and uncommon molecules suggests that the repertoire of toxins could be more conserved between families than has been considered, and their features indicate a dynamic process of venom evolution through molecular mechanisms, such as multiple recruitments of important scaffolds and domain exchange between paralogs, always keeping a minimalist nature in most toxin structures in opposition to their nontoxin counterparts.


Subject(s)
Animals , Elapidae/classification , Elapidae/genetics , Elapid Venoms/classification , Elapid Venoms/chemistry , Viperidae/classification , Viperidae/genetics , Molecular Sequence Data , Evolution, Molecular
3.
Toxicon ; 46(1): 31-38, jul.2005.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1068211

ABSTRACT

The generation of expressed sequence tags (ESTs) from the pit-viper snake Lachesis muta venom glands allowed us to identify two cDNA isoforms which encode the precursors for bradykinin-potentiating peptides (BPPs) and a C-type natriuretic peptide (CNP). The sequence data derived from these cDNAs combined with the venom peptides identification using MALDI-TOF mass spectrometry analysis predicted that these molecules are the precursor protein isoforms that are further processed to produce five novel BPPs and a CNP. They were identified directly in crude venom using MALDI-TOF. The BPPs sequences were further confirmed by MALDI-TOF/TOF de novo sequencing, and an unusual BPP with a residue of tryptophan at the N-terminus (usually it is pyroglutamate) was identified. The putative processing steps required to form the mature BPPs and CNP seem to be similar to those proposed for the ones found in the venom of Bothrops jararaca and Glodyus blomhoffi.


Subject(s)
Animals , Bradykinin/metabolism , Lachesis muta , Natriuretic Peptide, C-Type/analysis , Crotalid Venoms/chemistry , Bothrops , Mass Spectrometry/methods , Expressed Sequence Tags , Sequence Homology, Amino Acid , Peptides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...