Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29521, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681616

ABSTRACT

Kale is known for its exceptional nourishing and functional benefits to human body. However, it is an understudied species from genomic as well as agronomic aspects. It is important to characterize niche kale germplasms around the world to systematically conserve and utilize its genetic variability, especially for commercial traits in the interest of growers, consumers and industry. With this view, genomic and phenotypic characterizations of 62 Kashmiri kale accessions including popular landraces were done to estimate and partition genetic diversity, understand trait relationships, develop population structure and divulge marker-trait associations of economic significance. Sixty-six cross species microsatellite (SSR) markers within Brassica genus amplified 269 alleles in the germplasm. Their polymorphic information content (PIC) ranged from 0.00078 to 0.953 with an average of 0.407. The population structure analysis and neighbour joining tree clustering categorized the germplasm into three sub-populations. AMOVA revealed more within-population variance (67.73 %) than among-populations (32.27 %) variance. The principal component analysis (PCA) involving 24 agronomical traits revealed seven PCs (PC1 to PC7) having Eigen values more than 1, which explained a cumulative variation of 69.21 %. Association mapping with respect to these 24 agronomical traits using mixed linear model and general linear model revealed six overlapping significant marker-trait relationships with five being significant at probability value of 0.001/0.0001. The highly significant associations of two SSRs with economically important traits (siliqua length and seed weight) significantly correlated/related with leaf yield and seed yield were revealed for their possible utilization in marker assisted breeding for higher leaf and seed yields.

2.
Sci Rep ; 10(1): 22113, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335131

ABSTRACT

TSD276-2, a wheat genetic stock derived from the cross Agra Local/T. spelta 276 showed broad spectrum resistance against leaf rust pathogen. Genetic analysis was undertaken using F1, F2, F2:3 and BC1F1 generations derived from the cross TSD276-2/Agra Local. The results revealed a single recessive gene for leaf rust resistance, tentatively named as LrTs276-2, in TSD276-2. Molecular mapping of leaf rust resistance gene LrTs276-2 in TSD276-2 was done using SNP-based PCR and SSR markers. For Bulked Segregant Analysis (BSA), two bulks viz. resistant bulk and susceptible bulk, and the parents TSD276-2 and Agra Local were genotyped for SNPs using AFFYMETRIX 35K Wheat Breeders' AXIOM array. T. spelta 276 was also genotyped and used as a check. BSA indicated that the gene for leaf rust resistance in TSD276-2 is located on chromosome arm 1DS. Putatively linked SNPs on chromosome arm 1DS were converted into PCR-based markers. Polymorphic SSR markers on chromosome arm 1DS were also identified. Final linkage map was constructed using one SNP-based PCR and three SSR markers. The rust reaction and chromosomal location suggest that LrTs276-2 is a new leaf rust resistance gene which may be useful in broadening the genetic base of leaf rust resistance in wheat.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Genes, Recessive , Plant Diseases/genetics , Plant Diseases/microbiology , Puccinia , Triticum/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant , Genotype , Microsatellite Repeats , Phenotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...