Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(18): 8607-8617, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37197385

ABSTRACT

We present a joint experimental and theoretical study of the through-space charge transfer (CT) TADF molecule TpAT-tFFO. The measured fluorescence has a singular Gaussian line shape but two decay components, coming from two distinct molecular CT conformers, energetically only 20 meV apart. We determined the intersystem crossing rate (1 × 107 s-1) to be 1 order of magnitude faster than radiative decay, and prompt emission (PF) is therefore quenched within 30 ns, leaving delayed fluorescence (DF) observable from 30 ns onward as the measured reverse intersystem crossing (rISC) rate is >1 × 106 s-1, yielding a DF/PF ratio >98%. Time-resolved emission spectra measured between 30 ns and 900 ms in films show no change in the spectral band shape, but between 50 and 400 ms, we observe a ca. 65 meV red shift of the emission, ascribed to the DF to phosphorescence transition, with the phosphorescence (lifetime >1 s) emanating from the lowest 3CT state. A host-independent thermal activation energy of 16 meV is found, indicating that small-amplitude vibrational motions (∼140 cm-1) of the donor with respect to the acceptor dominate rISC. TpAT-tFFO photophysics is dynamic, and these vibrational motions drive the molecule between maximal rISC rate and high radiative decay configurations so that the molecule can be thought to be "self-optimizing" for the best TADF performance.

2.
Chem Sci ; 13(23): 7057-7066, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35774172

ABSTRACT

Quantum chemical studies employing combined density functional and multireference configuration interaction methods suggest five excited electronic states to be involved in the prompt and delayed fluorescence emission of TpAT-tFFO. Three of them, a pair of singlet and triplet charge transfer (CT) states (S1 and T1) and a locally excited (LE) triplet state (T3), can be associated with the (Me → N) conformer, the other two CT-type states (S2 and T2) form the lowest excited singlet and triplet states of the (Me → Ph) conformer. The two conformers, which differ in essence by the shearing angle of the face-to-face aligned donor and acceptor moieties, are easily interconverted in the electronic ground state whereas the reorganization energy is substantial in the excited singlet state, thus explaining the two experimentally observed time constants of prompt fluorescence emission. Forward and reverse intersystem crossing between the singlet and triplet CT states is mediated by vibronic spin-orbit interactions involving the LE T3 state. Low-frequency vibrational modes altering the distance and alignment of the donor and acceptor π-systems tune the S1 and T3 states (likewise S2 and T3) into and out of resonance. The enhancement of intersystem crossing due to the interplay of vibronic and spin-orbit coupling is considered a general feature of organic through-space charge-transfer thermally activated delayed fluorescence emitters.

3.
Chemistry ; 28(30): e202200525, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35324026

ABSTRACT

Designing highly efficient purely organic phosphors at room temperature remains a challenge because of fast non-radiative processes and slow intersystem crossing (ISC) rates. The majority of them emit only single component phosphorescence. Herein, we have prepared 3 isomers (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers (o-, m- and p-BrTAB) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. Based on theoretical calculations and crystal structure analysis of o-BrTAB, the short lifetime component is ascribed to the T1 M state of the monomer which emits the higher energy phosphorescence. The long-lived, lower energy phosphorescence emission is attributed to the T1 A state of an aggregate, with multiple intermolecular interactions existing in crystalline o-BrTAB inhibiting nonradiative decay and stabilizing the triplet states efficiently.

4.
J Phys Chem A ; 125(46): 10044-10051, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34756038

ABSTRACT

Heptazine derivatives are promising dopants for electroluminescent devices. Recent studies raised the question whether heptazines exhibit a small regular or an inverted singlet-triplet (IST) gap. It was argued that the S1 ← T1 reverse intersystem crossing (RISC) is a downhill process in IST emitters and therefore does not require thermal activation, thus enabling efficient harvesting of triplet excitons. Rate constants were not determined in these studies. Modeling the excited-state properties of heptazine proves challenging because fluorescence and intersystem crossing (ISC) are symmetry-forbidden in first order. In this work, we present a comprehensive theoretical study of the photophysics of heptazine and its derivative HAP-3MF. The calculations of electronic excitation energies and vibronic coupling matrix elements have been conducted at the density functional theory/multireference configuration interaction (DFT/MRCI) level of theory. We have employed a finite difference approach to determine nonadiabatic couplings and derivatives of spin-orbit coupling and electric dipole transition matrix elements with respect to normal coordinate displacements. Kinetic constants for fluorescence, phosphorescence, internal conversion (IC), ISC, and RISC have been computed in the framework of a static approach. Radiative S1 ↔ S0 transitions borrow intensity mainly from optically bright E' π → π* states, while S1 ↔ T1 (R)ISC is mediated by E″ states of n → π* character. Test calculations show that IST gaps as large as those reported in the literature are counterproductive and slow down the S1 ← T1 RISC process. Using the adiabatic DFT/MRCI singlet-triplet splitting of -0.02 eV, we find vibronically enhanced ISC and RISC to be fast in the heptazine core compound. Nevertheless, its photo- and electroluminescence quantum yields are predicted to be very low because S1 → S0 IC efficiently quenches the luminescence. In contrast, fluorescence, IC, ISC, and RISC proceed at similar time scales in HAP-3MF.

5.
Phys Chem Chem Phys ; 23(5): 3668-3678, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33527934

ABSTRACT

Multireference quantum chemical calculations were performed in order to investigate the (reverse) intersystem crossing ((R)ISC) mechanisms of 4,5-di(9H-carbazol-9-yl)-phthalonitrile (2CzPN). A combination of density funcional theory (DFT) and multireference configuration interaction methods (MRCI) was used. The excellent agreement of the computed absorption spectrum with available experimental absorption spectra lends confidence to the chosen computational protocol. Vertically, two triplet excited states (T1 and T2) are found below the S1 state. At the excited state minima, the calculated adiabatic energies locate only the T1 state below the S1 state. The enhanced charge transfer (CT) character of the geometrically relaxed excited states causes their mutual (direct) spin-orbit coupling (SOC) interaction to be low. Contributions of vibronic SOC to the (R)ISC probability, evaluated by a Herzberg-Teller-like procedure for a temperature of 300 K, are small but not negligible. For ISC, the S1→ T1 channel is the fastest (8 × 106 s-1), while the S1→ T2 channel is found to be thermally activated (9 × 104 s-1) and less efficient when proceeding from the adiabatic S1 state. Our calculations also reveal, however, a barrierless S1→ T2 ISC pathway near the Franck-Condon region. RISC is found to essentially proceed via the T1→ S1 channel, with a rate constant of (3 × 104 s-1) if our adiabatic singlet-triplet energy gap in vacuum (ΔEST = 0.12 eV) is employed. Shifting the potentials to match two experimentally reported singlet-triplet energy gaps in toluene (ΔEST = 0.21 and 0.31 eV, respectively) leads to a drastic reduction of the computed rate constant by up to 4 orders of magnitude. The T2 state is not expected to play a major role in mediating triplet-singlet transitions in 2CzPN unless it is directly populated by hot excitons. No indication for a strong vibronic coupling of the T2 and T1 potentials is found, which could help overcome the negative exponential dependence of the RISC rate constant on the magnitude of the energy gap.

6.
Angew Chem Int Ed Engl ; 59(39): 17137-17144, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32573931

ABSTRACT

Achieving highly efficient phosphorescence in purely organic luminophors at room temperature remains a major challenge due to slow intersystem crossing (ISC) rates in combination with effective non-radiative processes in those systems. Most room temperature phosphorescent (RTP) organic materials have O- or N-lone pairs leading to low lying (n, π*) and (π, π*) excited states which accelerate kisc through El-Sayed's rule. Herein, we report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. RTP is only observed in the crystalline state and in highly doped PMMA films which are indicative of aggregation induced emission (AIE). Detailed crystal structure analysis suggested that intermolecular interactions are important for efficient RTP. Furthermore, photophysical studies of the isolated molecules in a frozen glass, in combination with DFT/MRCI calculations, show that (σ, B p)→(π, B p) transitions accelerate the ISC process. This work provides a new approach for the design of RTP materials without (n, π*) transitions.

7.
Phys Chem Chem Phys ; 21(19): 9912-9923, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31038527

ABSTRACT

10-Methylisoalloxazine (MIA) and its mono-fluorinated derivatives (6-9F-MIA) were investigated by means of quantum chemistry, looking into the influence of fluorination on fluorescence, absorption and inter-system crossing (ISC). A maximized fluorescence quantum yield (ΦFl) of this chromophore is desirable for application as a potential fluorescence marker in biodiagnostics/photobiological studies. An enhanced triplet quantum yield ΦT on the other hand may open a perspective for photodynamic therapies (PDT) in cancer treatment. Determination of equilibrium geometries was carried out employing (time-dependent) Kohn-Sham density functional theory and electronic properties were obtained using a combined density functional theory and multi-reference configuration interaction (DFT/MRCI) method. In the gas phase, El-Sayed-favored 1(ππ*) [radiolysis arrow - arrow with voltage kink] 3(nπ*)-ISC enables population transfer to the triplet domain on a timescale of 109 s-1, i.e. significantly faster than fluorescence (kFl ≈ 107 s-1). Two different models were applied to investigate the influence of aqueous medium on absorption and relaxation: the implicit solvation model A is the well-established conductor-like screening model (COSMO) and hybrid model B combines quantum mechanical micro-hydration and conductor-like screening. A polar, protic environment leads to a significant blue-shift of the nπ* potentials, slowing down the ISC process to 107-108 s-1, now enabled by vibronic spin-orbit coupling. Simple principles are derived that demonstrate the effect of fluorination at different positions on the spectroscopic properties. These principles can be utilized with respect to multiply fluorinated derivatives and even further substitution to enlarge effects on the population decay and quantum yields.


Subject(s)
Density Functional Theory , Flavins/chemistry , Fluorescence , Halogenation , Molecular Structure , Photochemical Processes
8.
J Chem Theory Comput ; 13(2): 749-766, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28045526

ABSTRACT

In this work, we report benchmark spin-orbit calculations for a representative set of electronic states including π → π*, n → π*, and π → σ* and Rydberg states of organic molecules. Auxiliary many-electron wave functions (AMEWs) have been generated from left and/or right eigenvectors of Casida's non-Hermitian time-dependent density functional theory (TDDFT) equation. The newly developed Spoiler program has been used to evaluate spin-orbit matrix elements (SOMEs) from full linear response TDDFT and TDDFT calculations in Tamm-Dancoff approximation (TDA) in conjunction with the well-known B3-LYP and PBE0 hybrid functionals. The data thus obtained have been benchmarked against SOMEs from multireference configuration interaction calculations recently performed in our group. It turns out that the TDDFT SOMEs are rather insensitive with regard to the choice of eigenvectors (left, right, or mixed) as long as the AMEWs are normalized. To avoid problematic excitation energies of low-lying triplet excited states, the use of the TDA is recommended. With regard to SOMEs, a slight preference is found for the PBE0 functional.

SELECTION OF CITATIONS
SEARCH DETAIL
...