Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 14(12): e0219724, 2019.
Article in English | MEDLINE | ID: mdl-31881020

ABSTRACT

Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naïve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations.


Subject(s)
Glioma/genetics , Isocitrate Dehydrogenase/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Case-Control Studies , Female , Fluorescent Antibody Technique/methods , Genetic Heterogeneity , Humans , Isocitrate Dehydrogenase/metabolism , Magnetic Resonance Imaging/methods , Male , Middle Aged , Mutation , Neoplasm Grading , Proteomics , Sequence Analysis, RNA/methods , Single-Cell Analysis , Exome Sequencing/methods
2.
Histopathology ; 64(2): 242-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24330149

ABSTRACT

AIMS: Multiplexed immunofluorescence is a powerful tool for validating multigene assays and understanding the complex interplay of proteins implicated in breast cancer within a morphological context. We describe a novel technology for imaging an extended panel of biomarkers on a single, formalin-fixed paraffin-embedded breast sample and evaluating biomarker interaction at a single-cell level, and demonstrate proof-of-concept on a small set of breast tumours, including those which co-express hormone receptors with Her2/neu and Ki-67. METHODS AND RESULTS: Using a microfluidic flow cell, reagent exchange was automated and consisted of serial rounds of staining with dye-conjugated antibodies, imaging and chemical deactivation. A two-step antigen retrieval process was developed to satisfy all epitopes simultaneously, and key parameters were optimized. The imaging sequence was applied to seven breast tumours, and compared with conventional immunohistochemistry. Single-cell correlation analysis was performed with automated image processing. CONCLUSIONS: We have described a novel platform for evaluating biomarker co-localization. Expression in multiplexed images is consistent with conventional immunohistochemistry. Automation reduces inconsistencies in staining and positional shifts, while the fluorescent dye cycling approach dramatically expands the number of biomarkers which can be visualized and quantified on a single tissue section.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast/metabolism , Fluorescent Antibody Technique/methods , Immunohistochemistry/methods , Breast/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans
3.
Proc Natl Acad Sci U S A ; 110(29): 11982-7, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23818604

ABSTRACT

Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffin-embedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Colonic Neoplasms/diagnosis , Formaldehyde , Microscopy, Fluorescence/methods , Paraffin Embedding/methods , 3,3'-Diaminobenzidine/metabolism , Cell Line, Tumor , Female , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , In Situ Hybridization, Fluorescence , Receptor, ErbB-2/metabolism , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Statistics, Nonparametric , Tumor Suppressor Protein p53/metabolism
4.
Biol Open ; 2(5): 439-47, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23789091

ABSTRACT

Epithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which have not been characterized throughout development, and yet are critical for understanding organ development, regeneration, and disease. Here we applied a serial multiplexed fluorescent immunohistochemistry technology to map the progressive refinement of the epithelial and mesenchymal cell populations throughout development from embryonic day 14 through postnatal day 20. Using computational single cell analysis methods, we simultaneously mapped the evolving temporal and spatial location of epithelial cells expressing subsets of differentiation and progenitor markers throughout salivary gland development. We mapped epithelial cell differentiation markers, including aquaporin 5, PSP, SABPA, and mucin 10 (acinar cells); cytokeratin 7 (ductal cells); and smooth muscle α-actin (myoepithelial cells) and epithelial progenitor cell markers, cytokeratin 5 and c-kit. We used pairwise correlation and visual mapping of the cells in multiplexed images to quantify the number of single- and double-positive cells expressing these differentiation and progenitor markers at each developmental stage. We identified smooth muscle α-actin as a putative early myoepithelial progenitor marker that is expressed in cytokeratin 5-negative cells. Additionally, our results reveal dynamic expansion and redistributions of c-kit- and K5-positive progenitor cell populations throughout development and in postnatal glands. The data suggest that there are temporally and spatially discreet progenitor populations that contribute to salivary gland development and homeostasis.

5.
IEEE Trans Med Imaging ; 29(8): 1457-62, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20304722

ABSTRACT

We present a new application of multispectral analysis for subcellular measurement of multiple proteins in formalin-fixed paraffin embedded tissue and cells. Typically, the targets of interest are present in the same or spatially overlapping cellular compartments. Such co-localization can complicate analysis and interpretation of the images obtained using traditional fluorescence, especially when spectrally overlapping labels are present. The spectral properties of currently available fluorescent dyes set an upper limit to the number of molecules that can be detected simultaneously with traditional fluorescence. By exciting a set of fluorophores at the same wavelength and unmixing their emission signals from background autofluorescence, we were able to image three targets in a single channel. This parallel imaging approach provides significant advantages for multiplexed analysis of tissues and cells.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence, Multiphoton/methods , Microscopy, Fluorescence/methods , Proteins/analysis , Tissue Array Analysis/methods , Algorithms , Animals , Biomarkers/analysis , Breast/chemistry , Breast Neoplasms/metabolism , Carbocyanines/chemistry , Cyclic AMP Response Element-Binding Protein/analysis , Female , Humans , Lung/chemistry , Male , Mice , Prostate/chemistry , Signal Processing, Computer-Assisted
6.
J Org Chem ; 74(10): 4001-4, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19374381

ABSTRACT

The enantioselective synthesis of (+)-tetrabenazine (TBZ) and (+)-dihydrotetrabenazine (DTBZ), agents of significant interest for therapeutic and molecular imaging applications, has been completed in 21% (TBZ) and 16% (DTBZ) overall yield and in >97% ee from the starting dihydroisoquinoline. The synthesis utilizes Sodeoka's palladium-catalyzed asymmetric malonate addition to set the initial stereocenter followed by a number of diastereoselective transformations to incorporate the remaining asymmetric centers.


Subject(s)
Tetrabenazine/analogs & derivatives , Tetrabenazine/chemical synthesis , Catalysis , Palladium/chemistry , Stereoisomerism , Substrate Specificity , Tetrabenazine/chemistry
7.
J Med Chem ; 51(14): 4315-20, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18578471

ABSTRACT

We have previously demonstrated that the prototypical GABA B receptor agonist baclofen inhibits transient lower esophageal sphincter relaxations (TLESRs), the most important mechanism for gastroesophageal reflux. Thus, GABA B agonists could be exploited for the treatment of gastroesophageal reflux disease. However, baclofen, which is used as an antispastic agent, and other previously known GABA B agonists can produce CNS side effects such as sedation, dizziness, nausea, and vomiting at higher doses. We now report the discovery of atypical GABA B agonists devoid of classical GABA B agonist related CNS side effects at therapeutic doses and the optimization of this type of compound for inhibition of TLESRs, which has resulted in a candidate drug ( R)- 7 (AZD3355) that is presently being evaluated in man.


Subject(s)
GABA Agonists/chemistry , GABA Agonists/pharmacology , GABA-B Receptor Agonists , Gastroesophageal Reflux/drug therapy , Animals , Dose-Response Relationship, Drug , GABA Agonists/therapeutic use , Humans , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Fast Atom Bombardment
8.
Bioorg Med Chem Lett ; 17(18): 5082-5, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17662603

ABSTRACT

Benzopyrans are selective estrogen receptor (ER) beta agonists (SERBAs), which bind the ER receptor subtypes alpha and beta in opposite orientations. We have used structure based drug design to show that this unique phenomena can be exploited via substitution at the 8-position of the benzopyran A-ring to disrupt binding to ERalpha, thus improving ERbeta subtype selectivity. X-ray cocrystal structures with ERalpha and ERbeta are supportive of this approach to improve selectivity in this structural class.


Subject(s)
Benzopyrans/pharmacology , Estrogen Receptor beta/agonists , Benzopyrans/chemistry , Crystallography, X-Ray , Ligands , Models, Molecular
10.
Bioorg Med Chem Lett ; 14(24): 6011-6, 2004 Dec 20.
Article in English | MEDLINE | ID: mdl-15546719

ABSTRACT

Several fused bicyclic systems have been investigated to serve as the core structure of potent and selective 5-HT1F receptor agonists. Replacement of the indole nucleus in 2 with indazole and 'inverted' indazole provided more potent and selective 5-HT1F receptor ligands. Indoline and 1,2-benzisoxazole systems also provided potent 5-HT1F receptor agonists, and the 5-HT1A receptor selectivity of the indoline- and 1,2-benzisoxazole-based 5-HT1F receptor agonists could be improved with modification of the benzoyl moiety of the benzamides. Through these studies, we found that the inherent geometries of the templates, not the nature of hybridization of the linking atom, were important for the 5-HT1F receptor recognition.


Subject(s)
Benzamides , Bridged Bicyclo Compounds, Heterocyclic , Receptors, Serotonin/metabolism , Serotonin Receptor Agonists , Benzamides/chemical synthesis , Benzamides/chemistry , Benzamides/pharmacology , Binding, Competitive , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Evaluation Studies as Topic , Molecular Structure , Receptors, Serotonin/drug effects , Serotonin Receptor Agonists/chemical synthesis , Serotonin Receptor Agonists/chemistry , Serotonin Receptor Agonists/pharmacology , Structure-Activity Relationship , Receptor, Serotonin, 5-HT1F
11.
J Org Chem ; 68(3): 770-8, 2003 Feb 07.
Article in English | MEDLINE | ID: mdl-12558398

ABSTRACT

Methodology to prepare 8-amido-2-amino-1,2,3,4-tetrahydro-2-dibenzofurans, analogues with a fluorine substituent incorporated in the 6-, 7-, and 9-positions, and a difluorinated analogue with fluorines in the 6- and 9-positions is described. The tetrahydrodibenzofuran ring systems are prepared by acid-catalyzed [3,3]-sigmatropic rearrangement of O-aryloximes. Regioselective reactions to prepare the requisite O-aryloxime intermediates from commercially available fluorobenzene derivatives are discussed.


Subject(s)
Combinatorial Chemistry Techniques , Furans/chemical synthesis , Hydrocarbons, Fluorinated/chemical synthesis , Oximes/chemistry , Carbazoles/chemistry , Catalysis , Chromatography, High Pressure Liquid , Fluorobenzenes/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Serotonin/chemistry , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...