Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34211622

ABSTRACT

Microwave radiometry has provided valuable spaceborne observations of Earth's geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500-1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500-1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500-1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities.

2.
IEEE Trans Geosci Remote Sens ; 55(3): 1285-1304, 2017 Mar.
Article in English | MEDLINE | ID: mdl-32742050

ABSTRACT

Radiometers operating at L-band (1.4 GHz) are used to retrieve sea surface salinity over ice-free oceans and have been used recently to study the cryosphere. One hindrance of their use in the high latitudes is the preponderance of mixed scenes, where seawater and sea ice are both present in the sensor's field of view (FOV). Accurately characterizing the scene is crucial for oceanographic and cryospheric applications. To that end, a sea ice fraction model, composed of passive microwave sea ice concentration retrievals and an instrument simulator that integrates radiative power coming from all around the antenna, is used. We investigate the model currently used operationally to derive the ice fraction affecting the Aquarius observations and show that it can be significantly improved. On the one hand, the current model tends to overestimate sea ice fraction in the marginal ice zone where observations are used for salinity retrievals. On the other hand, the current model underestimates ice fraction within the ice pack where observations are used to derive sea ice properties. For the northern hemisphere, we also find evidence of the sea ice type impact on L-band radiometric observations. We present a model to derive sea ice fractions that are in better agreement with Aquarius radiometric observations using the Advanced Microwave Scanning Radiometer 2 Bootstrap algorithm for sea ice concentration and using high-resolution integration over the sensor's FOV.

SELECTION OF CITATIONS
SEARCH DETAIL
...