Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1370, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355570

ABSTRACT

Climate change is driving extreme changes to the environment, posing substantial threats to global food security and bioenergy. Given the direct role of plant roots in mediating plant-environment interactions, engineering the form and function of root systems and their associated microbiota may mitigate these effects. Synthetic genetic circuits have enabled sophisticated control of gene expression in microbial systems for years and a surge of advances has heralded the extension of this approach to multicellular plant species. Targeting these tools to affect root structure, exudation, and microbe activity on root surfaces provide multiple strategies for the advancement of climate-ready crops.


Subject(s)
Bacteria , Rhizosphere , Bacteria/genetics , Synthetic Biology , Plant Roots/metabolism , Soil Microbiology , Crops, Agricultural , Soil/chemistry
2.
Dev Cell ; 58(22): 2413-2415, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37989080
3.
Trends Plant Sci ; 28(5): 537-543, 2023 05.
Article in English | MEDLINE | ID: mdl-36740490

ABSTRACT

Greenhouse gas (GHG) emissions have created a global climate crisis which requires immediate interventions to mitigate the negative effects on all aspects of life on this planet. As current agriculture and land use contributes up to 25% of total GHG emissions, plant scientists take center stage in finding possible solutions for a transition to sustainable agriculture and land use. In this article, the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term, and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels.


Subject(s)
Agriculture , Greenhouse Gases , Greenhouse Gases/analysis , Plants , Climate Change , Greenhouse Effect
4.
Plant Cell ; 35(1): 67-108, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36018271

ABSTRACT

We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.


Subject(s)
Carbon Dioxide , Climate Change , Stress, Physiological , Carbon Dioxide/metabolism , Plant Transpiration/physiology , Plants/metabolism , Water/metabolism
5.
Elife ; 112022 09 01.
Article in English | MEDLINE | ID: mdl-36047575

ABSTRACT

The plant kingdom contains a stunning array of complex morphologies easily observed above-ground, but more challenging to visualize below-ground. Understanding the magnitude of diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental in determining how this trait contributes to species adaptation in local environments. Roots are the interface between the soil environment and the shoot system and therefore play a key role in anchorage, resource uptake, and stress resilience. Previously, we presented the GLO-Roots (Growth and Luminescence Observatory for Roots) system to study the RSA of soil-grown Arabidopsis thaliana plants from germination to maturity (Rellán-Álvarez et al., 2015). In this study, we present the automation of GLO-Roots using robotics and the development of image analysis pipelines in order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA in Arabidopsis, over time. These datasets describe the developmental dynamics of two independent panels of accessions and reveal highly complex and polygenic RSA traits that show significant correlation with climate variables of the accessions' respective origins.


Subject(s)
Arabidopsis , Plant Roots , Arabidopsis/physiology , Phenomics , Phenotype , Soil
6.
Science ; 377(6607): 747-751, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35951698

ABSTRACT

The shape of a plant's root system influences its ability to reach essential nutrients in the soil and to acquire water during drought. Progress in engineering plant roots to optimize water and nutrient acquisition has been limited by our capacity to design and build genetic programs that alter root growth in a predictable manner. We developed a collection of synthetic transcriptional regulators for plants that can be compiled to create genetic circuits. These circuits control gene expression by performing Boolean logic operations and can be used to predictably alter root structure. This work demonstrates the potential of synthetic genetic circuits to control gene expression across tissues and reprogram plant growth.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Synthetic , Plant Roots , Plant Roots/genetics , Plant Roots/growth & development , Soil , Water/metabolism
7.
Nat Plants ; 8(5): 549-560, 2022 05.
Article in English | MEDLINE | ID: mdl-35501452

ABSTRACT

The phytohormone abscisic acid (ABA) is a central regulator of acclimation to environmental stress; however, its contribution to differences in stress tolerance between species is unclear. To establish a comparative framework for understanding how stress hormone signalling pathways diverge across species, we studied the growth response of four Brassicaceae species to ABA treatment and generated transcriptomic and DNA affinity purification and sequencing datasets to construct a cross-species gene regulatory network (GRN) for ABA. Comparison of genes bound directly by ABA-responsive element binding factors suggests that cis-factors are most important for determining the target loci represented in the ABA GRN of a particular species. Using this GRN, we reveal how rewiring of growth hormone subnetworks contributes to stark differences in the response to ABA in the extremophyte Schrenkiella parvula. Our study provides a model for understanding how divergence in gene regulation can lead to species-specific physiological outcomes in response to hormonal cues.


Subject(s)
Arabidopsis , Brassicaceae , Abscisic Acid/metabolism , Arabidopsis/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Plant Growth Regulators/metabolism
8.
Nat Genet ; 54(5): 705-714, 2022 05.
Article in English | MEDLINE | ID: mdl-35513725

ABSTRACT

Most genes in photosynthetic organisms remain functionally uncharacterized. Here, using a barcoded mutant library of the model eukaryotic alga Chlamydomonas reinhardtii, we determined the phenotypes of more than 58,000 mutants under more than 121 different environmental growth conditions and chemical treatments. A total of 59% of genes are represented by at least one mutant that showed a phenotype, providing clues to the functions of thousands of genes. Mutant phenotypic profiles place uncharacterized genes into functional pathways such as DNA repair, photosynthesis, the CO2-concentrating mechanism and ciliogenesis. We illustrate the value of this resource by validating phenotypes and gene functions, including three new components of an actin cytoskeleton defense pathway. The data also inform phenotype discovery in land plants; mutants in Arabidopsis thaliana genes exhibit phenotypes similar to those we observed in their Chlamydomonas homologs. We anticipate that this resource will guide the functional characterization of genes across the tree of life.


Subject(s)
Arabidopsis , Chlamydomonas reinhardtii , Arabidopsis/genetics , Chlamydomonas reinhardtii/genetics , Eukaryota , Phenotype , Photosynthesis/genetics
9.
Plant Cell Environ ; 45(3): 602-619, 2022 03.
Article in English | MEDLINE | ID: mdl-35092025

ABSTRACT

Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.


Subject(s)
Oryza , Plant Roots , Germination , Seedlings , Zea mays
10.
Biodes Res ; 2022: 9858049, 2022.
Article in English | MEDLINE | ID: mdl-37850138

ABSTRACT

Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.

11.
Nat Commun ; 12(1): 5438, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521831

ABSTRACT

Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.


Subject(s)
Arabidopsis Proteins/metabolism , Biosensing Techniques , Intrinsically Disordered Proteins/metabolism , Molecular Chaperones/metabolism , Osmotic Pressure , Water/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Binding Sites , Cell Line, Tumor , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescence Resonance Energy Transfer , Gene Expression , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Kinetics , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Osmolar Concentration , Osteoblasts/cytology , Osteoblasts/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Thermodynamics
12.
Science ; 373(6562): 1532-1536, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34446443

ABSTRACT

In Arabidopsis, de novo organogenesis of lateral roots is patterned by an oscillatory mechanism called the root clock, which is dependent on unidentified metabolites. To determine whether retinoids regulate the root clock, we used a chemical reporter for retinaldehyde (retinal)­binding proteins. We found that retinal binding precedes the root clock and predicts sites of lateral root organogenesis. Application of retinal increased root clock oscillations and promoted lateral root formation. Expression of an Arabidopsis protein with homology to vertebrate retinoid-binding proteins, TEMPERATURE INDUCED LIPOCALIN (TIL), oscillates in the region of retinal binding to the reporter, confers retinal-binding activity in a heterologous system, and, when mutated, decreases retinal sensitivity. These results demonstrate a role for retinal and its binding partner in lateral root organogenesis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Lipocalins/metabolism , Plant Roots/growth & development , Retinaldehyde/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Fluorescence , Lipocalins/chemistry , Lipocalins/genetics , Meristem/metabolism , Mutation , Organogenesis, Plant , Plant Roots/metabolism , Protein Binding , Pyrimidinones/metabolism , Retinaldehyde/pharmacology , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34290139

ABSTRACT

Cellulose is synthesized at the plasma membrane by cellulose synthase (CESA) complexes (CSCs), which are assembled in the Golgi and secreted to the plasma membrane through the trans-Golgi network (TGN) compartment. However, the molecular mechanisms that guide CSCs through the secretory system and deliver them to the plasma membrane are poorly understood. Here, we identified an uncharacterized gene, TRANVIA (TVA), that is transcriptionally coregulated with the CESA genes required for primary cell wall synthesis. The tva mutant exhibits enhanced sensitivity to cellulose synthesis inhibitors; reduced cellulose content; and defective dynamics, density, and secretion of CSCs to the plasma membrane as compared to wild type. TVA is a plant-specific protein of unknown function that is detected in at least two different intracellular compartments: organelles labeled by markers for the TGN and smaller compartments that deliver CSCs to the plasma membrane. Together, our data suggest that TVA promotes trafficking of CSCs to the plasma membrane by facilitating exit from the TGN and/or interaction of CSC secretory vesicles with the plasma membrane.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Membrane/metabolism , Cellulose/metabolism , Glucosyltransferases/metabolism , Golgi Apparatus/metabolism , trans-Golgi Network/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cytokinesis , Glucosyltransferases/genetics , Microtubules , Protein Transport
14.
Plant Direct ; 5(4): e00316, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33870032

ABSTRACT

Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration. Engaging students and the general public in the wonder of plants, and science in general, requires renewed efforts that take advantage of advances in technology and new models of funding and knowledge dissemination. In November 2018, funded by the National Science Foundation through the Arabidopsis Research and Training for the 21st century (ART 21) research coordination network, a symposium and workshop were held that included a diverse panel of students, scientists, educators, and administrators from across the US. The purpose of the workshop was to re-envision how outreach programs are funded, evaluated, acknowledged, and shared within the plant science community. One key objective was to generate a roadmap for future efforts. We hope that this document will serve as such, by providing a comprehensive resource for students and young faculty interested in developing effective outreach programs. We also anticipate that this document will guide the formation of community partnerships to scale up currently successful outreach programs, and lead to the design of future programs that effectively engage with a more diverse student body and citizenry.

15.
Plant Physiol ; 185(2): 503-518, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33721893

ABSTRACT

Photosynthesis in leaves generates fixed-carbon resources and essential metabolites that support sink tissues, such as roots. Two of these metabolites, sucrose and auxin, promote growth in root systems, but the explicit connection between photosynthetic activity and control of root architecture has not been explored. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the Arabidopsis thaliana CYCLOPHILIN 38 (CYP38) gene, which causes accumulation of pre-emergent stage lateral roots. CYP38 was previously reported to stabilize photosystem II (PSII) in chloroplasts. CYP38 expression is enriched in shoots, and grafting experiments show that the gene acts non-cell-autonomously to promote lateral root emergence. Growth of wild-type plants under low-light conditions phenocopies the cyp38 lateral root emergence defect, as does the inhibition of PSII-dependent electron transport or Nicotinamide adenine dinucleotide phosphate (NADPH) production. Importantly, these perturbations to photosynthetic activity rapidly suppress lateral root emergence, which is separate from their effects on shoot size. Supplementary exogenous sucrose largely rescued primary root (PR) growth in cyp38, but not lateral root growth. Auxin (indole-3-acetic acid (IAA)) biosynthesis from tryptophan is dependent on reductant generated during photosynthesis. Consistently, we found that wild-type seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. IAA treatment rescued the cyp38 lateral root defect, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. These data directly confirm the importance of CYP38-dependent photosynthetic activity in supporting root growth, and define the specific contributions of two metabolites in refining root architecture under light-limited conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cyclophilins/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Cyclophilins/genetics , Electron Transport , Mutation , Phenotype , Photosynthesis , Photosystem II Protein Complex/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Signal Transduction
16.
Curr Biol ; 30(8): R344-R346, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32315631

ABSTRACT

Plant cell growth is constrained by the rate of water uptake and wall extensibility. New research reveals that the topology and geometry of cells in a tissue predicts the pressures that ultimately determine growth.


Subject(s)
Cell Wall , Plant Cells , Biophysics , Plant Development , Water
17.
New Phytol ; 225(4): 1428-1439, 2020 02.
Article in English | MEDLINE | ID: mdl-31486535

ABSTRACT

The structural and functional integrity of the cell wall needs to be constantly monitored and fine-tuned to allow for growth while preventing mechanical failure. Many studies have advanced our understanding of the pathways that contribute to cell wall biosynthesis and how these pathways are regulated by external and internal cues. Recent evidence also supports a model in which certain aspects of the wall itself may act as growth-regulating signals. Molecular components of the signaling pathways that sense and maintain cell wall integrity have begun to be revealed, including signals arising in the wall, sensors that detect changes at the cell surface, and downstream signal transduction modules. Abiotic and biotic stress conditions provide new contexts for the study of cell wall integrity, but the nature and consequences of wall disruptions due to various stressors require further investigation. A deeper understanding of cell wall signaling will provide insights into the growth regulatory mechanisms that allow plants to survive in changing environments.


Subject(s)
Cell Wall/physiology , Plant Cells/physiology , Stress, Physiological , Cell Membrane/physiology , Cytoskeleton/physiology , Signal Transduction/physiology
18.
Nat Commun ; 10(1): 3540, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31387989

ABSTRACT

Directional organ growth allows the plant root system to strategically cover its surroundings. Intercellular auxin transport is aligned with the gravity vector in the primary root tips, facilitating downward organ bending at the lower root flank. Here we show that cytokinin signaling functions as a lateral root specific anti-gravitropic component, promoting the radial distribution of the root system. We performed a genome-wide association study and reveal that signal peptide processing of Cytokinin Oxidase 2 (CKX2) affects its enzymatic activity and, thereby, determines the degradation of cytokinins in natural Arabidopsis thaliana accessions. Cytokinin signaling interferes with growth at the upper lateral root flank and thereby prevents downward bending. Our interdisciplinary approach proposes that two phytohormonal cues at opposite organ flanks counterbalance each other's negative impact on growth, suppressing organ growth towards gravity and allow for radial expansion of the root system.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Cytokinins/metabolism , Oxidoreductases/metabolism , Plant Growth Regulators/metabolism , Genome, Plant/genetics , Genome-Wide Association Study , Gravitropism , Oxidoreductases/genetics , Plant Roots/metabolism , Plants, Genetically Modified/physiology , Proteolysis , Systems Biology
19.
Annu Rev Cell Dev Biol ; 35: 239-257, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31382759

ABSTRACT

Roots provide the primary mechanism that plants use to absorb water and nutrients from their environment. These functions are dependent on developmental mechanisms that direct root growth and branching into regions of soil where these resources are relatively abundant. Water is the most limiting factor for plant growth, and its availability is determined by the weather, soil structure, and salinity. In this review, we define the developmental pathways that regulate the direction of growth and branching pattern of the root system, which together determine the expanse of soil from which a plant can access water. The ability of plants to regulate development in response to the spatial distribution of water is a focus of many recent studies and provides a model for understanding how biological systems utilize positional cues to affect signaling and morphogenesis. A better understanding of these processes will inform approaches to improve crop water use efficiency to more sustainably feed a growing population.


Subject(s)
Plant Roots/growth & development , Droughts , Plant Development , Plant Physiological Phenomena , Plants , Salinity , Soil , Water
20.
Plant Direct ; 3(4): e00133, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31245771

ABSTRACT

A key remit of the NSF-funded "Arabidopsis Research and Training for the 21st Century" (ART-21) Research Coordination Network has been to convene a series of workshops with community members to explore issues concerning research and training in plant biology, including the role that research using Arabidopsis thaliana can play in addressing those issues. A first workshop focused on training needs for bioinformatic and computational approaches in plant biology was held in 2016, and recommendations from that workshop have been published (Friesner et al., Plant Physiology, 175, 2017, 1499). In this white paper, we provide a summary of the discussions and insights arising from the second ART-21 workshop. The second workshop focused on experimental aspects of omics data acquisition and analysis and involved a broad spectrum of participants from academics and industry, ranging from graduate students through post-doctorates, early career and established investigators. Our hope is that this article will inspire beginning and established scientists, corporations, and funding agencies to pursue directions in research and training identified by this workshop, capitalizing on the reference species Arabidopsis thaliana and other valuable plant systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...