Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Lipidol ; 11(4): 920-928.e2, 2017.
Article in English | MEDLINE | ID: mdl-28625343

ABSTRACT

BACKGROUND: Cold exposure and ß3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. OBJECTIVE: The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. METHODS: Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by 1H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [3H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. RESULTS: Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. CONCLUSIONS: Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol.


Subject(s)
Cold Temperature , Lipoproteins, HDL/blood , Lipoproteins, HDL/chemistry , Triglycerides/blood , ATP Binding Cassette Transporter 1/metabolism , Adult , Biological Transport , Cholesterol/metabolism , Healthy Volunteers , Humans , Male , Particle Size , Time Factors , Young Adult
2.
Biomaterials ; 31(23): 6104-18, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20471080

ABSTRACT

Menisci are one of the most commonly injured parts of the knee with a limited healing potential. This study focuses on fabrication and characterization of biomimetic surfaces for meniscal tissue engineering. To achieve this, a combination of hyaluronic acid/chitosan (HA/CH) mutilayers with covalently immobilized major extracellular matrix (ECM) components of native meniscus, namely collagen I/II (COL.I/II) and chondroitin-6-sulfate (C6S) was employed. Adsorption of the biomolecules was monitored using a quartz crystal microbalance with dissipation (QCM-D) and fourier transform-surface plasmon resonance (FT-SPR). Immobilization of the biomolecules onto HA/CH mutilayers was achieved by sequential adsorption, with optimum binding at a molar ratio of 1.4:1 (COL.I/II: C6S). After adding COL.I/II, the layers became relatively more rigid and large aggregates were evident. The effects of the modified surfaces on cell proliferation, gene expression and proteoglycan production of rat meniscal cells were examined. Quantitative real-time reverse transcriptase polymerase chain reaction (RT-qPCR) analysis showed that primary meniscal cells dedifferentiated rapidly after one passage in monolayer culture. This process could be reversed by culturing the cells on C6S surfaces, as indicated by increases in both collagen II and aggrecan gene expression, as well as proteoglycan production. Cells with abundant lipid vacuoles were evident on all the surfaces over an extended culture period. The results demonstrate the feasibility of C6S surfaces to avoid the dedifferentiation that normally occurs during monolayer expansion of meniscal cells.


Subject(s)
Chitosan/administration & dosage , Extracellular Matrix/metabolism , Hyaluronic Acid/administration & dosage , Menisci, Tibial/cytology , Molecular Mimicry , Fourier Analysis , Menisci, Tibial/metabolism , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...