Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 93(16): 163901, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15524990

ABSTRACT

The generation of attosecond pulses by superposition of high harmonics relies on their synchronization in the emission. Our experiments in the low-order, plateau, and cutoff regions of the spectrum reveal different regimes in the electron dynamics determining the synchronization quality. The shortest pulses are obtained by combining a spectral filtering of harmonics from the end of the plateau and the cutoff, and a far-field spatial filtering that selects a single electron quantum path contribution to the emission. This method applies to isolated pulses as well as pulse trains.

2.
Science ; 302(5650): 1540-3, 2003 Nov 28.
Article in English | MEDLINE | ID: mdl-14645841

ABSTRACT

Subfemtosecond light pulses can be obtained by superposing several high harmonics of an intense laser pulse. Provided that the harmonics are emitted simultaneously, increasing their number should result in shorter pulses. However, we found that the high harmonics were not synchronized on an attosecond time scale, thus setting a lower limit to the achievable x-ray pulse duration. We showed that the synchronization could be improved considerably by controlling the underlying ultrafast electron dynamics, to provide pulses of 130 attoseconds in duration. We discuss the possibility of achieving even shorter pulses, which would allow us to track fast electron processes in matter.

3.
Phys Rev Lett ; 91(6): 063901, 2003 Aug 08.
Article in English | MEDLINE | ID: mdl-12935073

ABSTRACT

The absolute timing of the high-harmonic attosecond pulse train with respect to the generating IR pump cycle has been measured for the first time. The attosecond pulses occur 190+/-20 as after each pump field maxima (twice per optical cycle), in agreement with the "short" quantum path of the quasiclassical model of harmonic generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...