Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 100(6): 1497-1509, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35398900

ABSTRACT

Hypoxia is currently one of the greatest threats to coastal ecosystems worldwide, generating massive mortality of marine organisms, loss of benthic ecosystems and a decrease in fishery production. We evaluated and compared the tolerance to hypoxia of two species from different habitats of the Peruvian coast, the Peruvian rock seabass Paralabrax humeralis and the Peruvian grunt Anisotremus scapularis. The effect of hypoxia was measured as a function of the exposure time (progressive and chronic) on the behavioural and physiological responses of the two species, as well as on the enzymatic activity associated with the oxidative stress response of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and alkaline phosphatase (AKP). The ventilatory frequency was measured at two different temperatures (16 and 22°C) under progressive hypoxia conditions to determine the ventilatory critical point (Vcp). A. scapularis showed a higher Vcp than P. humeralis, which was positively affected by temperature. The median lethal time of A. scapularis was 36 min at 60% of oxygen saturation, while P. humeralis showed no mortality after 31 days of exposure at 5% oxygen saturation. Different enzymatic activity (P < 0.05) between species under hypoxia was recorded, in SOD (gill and muscle) and AKP (blood). A general tendency, under hypoxia, to slightly increase LDH activity (except for blood in A. scapularis, P < 0.05) and SOD activity (mainly in muscle of A. scapularis, P < 0.05), and decrease AKP activity (mainly in liver of P. humeralis, P < 0.05) was observed. The response of P. humeralis to hypoxia goes through a reduction in activity and metabolism, so this species can be considered hypoxia-tolerant, allowing it to face hypoxia events during prolonged periods. On the other hand, A. scapularis response to hypoxia prioritizes avoidance mechanisms and, together with other adaptations, makes it especially vulnerable to hypoxia and able to be considered hypoxia-intolerant.


Subject(s)
Bass , Ecosystem , Animals , Bass/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Peru , Superoxide Dismutase/metabolism
2.
J Fish Biol ; 99(6): 1804-1821, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34410007

ABSTRACT

Understanding aspects of the biology of early life stages of marine fish is critical if one hopes to reveal the factors and processes that impact the survival and recruitment (year class) strength. The Peruvian anchovy (Engraulis ringens) is a key species in the Humboldt current system, and the present study provides the first description of the embryonic and larval development of this species reared in captivity. Embryonic and early exogenous feeding stages of larvae were illustrated in detail at 18.5°C. Hatching was completed within 42 and 48 h post-fertilization at 18.5 and 14.5°C, respectively. Mean ± 95% C.I. standard length (LS ) at hatch (3.40 ± 0.10 mm at 18.5°C and 2.76 ± 0.34 mm at 14.5°C) was significantly different between the two temperatures. Larval behaviour was assessed at 18.5°C; at the onset of exogenous feeding [3 days post-hatch (dph)], larvae were fed small, motile dinoflagellates, Akashiwo sanguinea. At 7 dph, larvae started to feed almost exclusively on zooplankton (rotifers and Artemia nauplii). Larval activity increased with age, and the first sign of schooling was noted at 31 dph (18.56 mm LS ) at 18.5°C. Temperature had a significant effect on size-at-age, but not on body shape (depth to LS ratio). The size-at-age data for larvae (this study) was used to parameterize a temperature-corrected von Bertalanffy growth function for Peruvian anchovy, the accuracy of which was assessed for juveniles and adults (literature values).


Subject(s)
Embryonic Development , Fishes , Animals , Larva , Peru , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...