Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 64(1): 175-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26507463

ABSTRACT

In mammals, large caliber axons are ensheathed by myelin, a glial specialization supporting axon integrity and conferring accelerated and energy-efficient action potential conduction. Myelin basic protein (MBP) is required for normal myelin elaboration with maximal mbp transcription in oligodendrocytes requiring the upstream M3 enhancer. To further characterize the mechanism regulating mbp transcription, we defined M3 structure/function relationships by evaluating its evolutionary conservation, DNA footprints and the developmental programing conferred in mice by M3 derivatives. Multiple M3 regulatory element combinations were found to drive expression in oligodendrocytes and Schwann cells with a minimal 129 bp sequence conferring expression in oligodendrocytes throughout myelin elaboration, maintenance and repair. Unexpectedly, M3 derivatives conferred markedly different spatial and temporal expression programs thus illuminating striking transcriptional heterogeneity within post-mitotic oligodendrocytes. Finally, one M3 derivative engaged only during primary myelination, not during adult remyelination, demonstrating that transcriptional regulation in the two states is not equivalent.


Subject(s)
Gene Regulatory Networks , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Myelin Sheath/genetics , Myelin Sheath/metabolism , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Base Sequence , Brain/growth & development , Brain/metabolism , Chickens , Conserved Sequence , Immunohistochemistry , In Situ Hybridization , Male , Mice, Transgenic , Molecular Sequence Data , Mutation , Optic Nerve/growth & development , Optic Nerve/metabolism , Sciatic Nerve/growth & development , Sciatic Nerve/metabolism , Sequence Alignment , Spinal Cord/growth & development , Spinal Cord/metabolism , beta-Galactosidase/metabolism
2.
Nucleic Acids Res ; 39(7): 2548-58, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21131280

ABSTRACT

Multiple regulatory modules contribute to the complex expression programs realized by many loci. Although long thought of as isolated components, recent studies demonstrate that such regulatory sequences can physically associate with promoters and with each other and may localize to specific sub-nuclear transcription factories. These associations provide a substrate for putative interactions and have led to the suggested existence of a transcriptional interactome. Here, using a controlled strategy of transgenesis, we analyzed the functional consequences of regulatory sequence interaction within the myelin basic protein (mbp) locus. Interactions were revealed through comparisons of the qualitative and quantitative expression programs conferred by an allelic series of 11 different enhancer/inter-enhancer combinations ligated to a common promoter/reporter gene. In a developmentally contextual manner, the regulatory output of all modules changed markedly in the presence of other sequences. Predicted by transgene expression programs, deletion of one such module from the endogenous locus reduced oligodendrocyte expression levels but unexpectedly, also attenuated expression of the overlapping golli transcriptional unit. These observations support a regulatory architecture that extends beyond a combinatorial model to include frequent interactions capable of significantly modulating the functions conferred through regulatory modules in isolation.


Subject(s)
Enhancer Elements, Genetic , Myelin Basic Protein/genetics , Transcription Factors/genetics , Animals , Gene Silencing , Genetic Loci , Mice , Mice, Knockout , Mice, Transgenic , Myelin Basic Protein/metabolism , Myelin Sheath/physiology , Oligodendroglia/metabolism , Promoter Regions, Genetic , Schwann Cells/metabolism , Transcription Factors/metabolism , Transcription, Genetic
3.
J Neurosci ; 25(48): 11210-7, 2005 Nov 30.
Article in English | MEDLINE | ID: mdl-16319321

ABSTRACT

Myelin basic protein (MBP) gene expression is conferred in oligodendrocytes and Schwann cells by different upstream enhancers. In Schwann cells, expression is controlled by a 422 bp enhancer lying -9 kb from the gene. We show here that it contains 22 mammalian conserved motifs > or =6 bp. To investigate their functional significance, different combinations of wild-type or mutated motifs were introduced into reporter constructs that were inserted in single copy at a common hypoxanthine phosphoribosyltransferase docking site in embryonic stem cells. Lines of transgenic mice were derived, and the subsequent qualitative and quantitative expression phenotypes were compared at different stages of maturation. In the enhancer core, seven contiguous motifs cooperate to confer Schwann cell specificity while different combinations of flanking motifs engage, at different stages of Schwann cell maturation, to modulate expression level. Mutation of a Krox-20 binding site reduces the level of reporter expression, whereas mutation of a potential Sox element silences reporter expression. This potential Sox motif was also found conserved in other Schwann cell enhancers, suggesting that it contributes widely to regulatory function. These results demonstrate a close relationship between phylogenetic footprints and regulatory function and suggest a general model of enhancer organization. Finally, this investigation demonstrates that in vivo functional analysis, supported by controlled transgenesis, can be a robust complement to molecular and bioinformatics approaches to regulatory mechanisms.


Subject(s)
Enhancer Elements, Genetic/physiology , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Schwann Cells/metabolism , Amino Acid Motifs/physiology , Animals , Axons/physiology , Chickens , DNA Footprinting , Humans , Hypoxanthine Phosphoribosyltransferase/metabolism , Male , Mice , Mice, Neurologic Mutants , Mice, Transgenic , Phylogeny , Protein Structure, Tertiary/physiology , Signal Transduction/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...