Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 14(2): 536-552, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33664793

ABSTRACT

Uncertainty hampers innovative mixed-fisheries management by the scales at which connectivity dynamics are relevant to management objectives. The spatial scale of sustainable stock management is species-specific and depends on ecology, life history and population connectivity. One valuable approach to understand these spatial scales is to determine to what extent population genetic structure correlates with the oceanographic environment. Here, we compare the level of genetic connectivity in three codistributed and commercially exploited demersal flatfish species living in the North East Atlantic Ocean. Population genetic structure was analysed based on 14, 14 and 10 neutral DNA microsatellite markers for turbot, brill and sole, respectively. We then used redundancy analysis (RDA) to attribute the genetic variation to spatial (geographical location), temporal (sampling year) and oceanographic (water column characteristics) components. The genetic structure of turbot was composed of three clusters and correlated with variation in the depth of the pycnocline, in addition to spatial factors. The genetic structure of brill was homogenous, but correlated with average annual stratification and spatial factors. In sole, the genetic structure was composed of three clusters, but was only linked to a temporal factor. We explored whether the management of data poor commercial fisheries, such as in brill and turbot, might benefit from population-specific information. We conclude that the management of fish stocks has to consider species-specific genetic structures and may benefit from the documentation of the genetic seascape and life-history traits.

3.
PLoS One ; 9(12): e115040, 2014.
Article in English | MEDLINE | ID: mdl-25541971

ABSTRACT

Linkage maps based on markers derived from genes are essential evolutionary tools for commercial marine fish to help identify genomic regions associated with complex traits and subject to selective forces at play during exploitation or selective breeding. Additionally, they allow the use of genomic information from other related species for which more detailed information is available. Sole (solea solea L.) is a commercially important flatfish species in the North Sea, subject to overexploitation and showing evidence of fisheries-induced evolutionary changes in growth- and maturation-related traits. Sole would definitely benefit from a linkage map to better understand how evolution has shaped its genome structure. This study presents a linkage map of sole based on 423 single nucleotide polymorphisms derived from expressed sequence tags and 8 neutral microsatellite markers. The total map length is 1233.8 cM and consists of 38 linkage groups with a size varying between 0 to 92.1 cM. Being derived from expressed sequence tags allowed us to align the map with the genome of four model fish species, namely medaka (Oryzias latipes), Nile tilapia (Oreochromis niloticus), three-spined stickleback (Gasterosteus aculeatus) and green spotted pufferfish (Tetraodon nigroviridis). This comparison revealed multiple conserved syntenic regions with all four species, and suggested that the linkage groups represent 21 putative sole chromosomes. The map was also compared to the linkage map of turbot (Scophthalmus maximus), another commercially important flatfish species and closely related to sole. For all putative sole chromosomes (except one) a turbot homolog was detected, confirming the even higher degree of synteny between these two flatfish species.


Subject(s)
Flatfishes/classification , Flatfishes/genetics , Genetic Linkage , Animals , Evolution, Molecular , Genome , Phylogeny , Polymorphism, Single Nucleotide , Synteny
4.
Mar Genomics ; 9: 33-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23067785

ABSTRACT

Genomic methodologies applied in evolutionary and fisheries research have been of great benefit to understand the marine ecosystem and the management of natural resources. Although single nucleotide polymorphisms (SNPs) are attractive for the study of local adaptation, spatial stock management and traceability, and investigating the effects of fisheries-induced selection, they have rarely been exploited in non-model organisms. This is partly due to difficulties in finding and validating SNPs in species with limited or no genomic resources. Complementary to random genome-scan approaches, a targeted candidate gene approach has the potential to unveil pre-selected functional diversity and provides more in depth information on the action of selection at specific genes. For example genes can be under selective pressure due to climate change and sustained periods of heavy fishing pressure. In this study, we applied a candidate gene approach in sole (Solea solea L.), an important member of the demersal ecosystem. As consumption flatfish it is heavy exploited and has experienced associated life-history changes over the last 60years. To discover novel genetic polymorphisms in or around genes linked to important life history traits in sole, we screened a total of 76 candidate genes related to growth and maturation using a targeted resequencing approach. We identified in total 86 putative SNPs in 22 genes and validated 29 SNPs using a multiplex single-base extension genotyping assay. We found 22 informative SNPs, of which two represent non-synonymous mutations, potentially of functional relevance. These novel markers should be rapidly and broadly applicable in analyses of natural sole populations, as a measure of the evolutionary signature of overfishing and for initiatives on marker assisted selection.


Subject(s)
Flatfishes/genetics , Gene Expression Regulation, Developmental/physiology , Polymorphism, Single Nucleotide , Animals , Demography , Fish Proteins/genetics , Fish Proteins/metabolism , Flatfishes/growth & development , Flatfishes/physiology
5.
Nat Commun ; 3: 851, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22617291

ABSTRACT

Illegal, Unreported and Unregulated fishing has had a major role in the overexploitation of global fish populations. In response, international regulations have been imposed and many fisheries have been 'eco-certified' by consumer organizations, but methods for independent control of catch certificates and eco-labels are urgently needed. Here we show that, by using gene-associated single nucleotide polymorphisms, individual marine fish can be assigned back to population of origin with unprecedented high levels of precision. By applying high differentiation single nucleotide polymorphism assays, in four commercial marine fish, on a pan-European scale, we find 93-100% of individuals could be correctly assigned to origin in policy-driven case studies. We show how case-targeted single nucleotide polymorphism assays can be created and forensically validated, using a centrally maintained and publicly available database. Our results demonstrate how application of gene-associated markers will likely revolutionize origin assignment and become highly valuable tools for fighting illegal fishing and mislabelling worldwide.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Animals , Conservation of Natural Resources , Ecology , Fisheries , Fishes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...