Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 20(12): 13055-64, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22714332

ABSTRACT

Nowadays, the search for a distribution capable of modeling the probability density function (PDF) of irradiance data under all conditions of atmospheric turbulence in the presence of aperture averaging still continues. Here, a family of PDFs alternative to the widely accepted Log-Normal and Gamma-Gamma distributions is proposed to model the PDF of the received optical power in free-space optical communications, namely, the Weibull and the exponentiated Weibull (EW) distribution. Particularly, it is shown how the proposed EW distribution offers an excellent fit to simulation and experimental data under all aperture averaging conditions, under weak and moderate turbulence conditions, as well as for point-like apertures. Another very attractive property of these distributions is the simple closed form expression of their respective PDF and cumulative distribution function.

2.
Appl Opt ; 49(17): 3369-79, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20539357

ABSTRACT

We analyze the intensity-modulation frequency-modulated continuous-wave (FMCW) technique for lidar remote sensing in the context of its application to distributed media. The goal of the technique is the reproduction of the sounded-medium profile along the emission path. A conceptual analysis is carried out to show the problems the basic version of the method presents for this application. The principal point is the appearance of a bandpass filtering effect, which seems to hinder its use in this context. A modified version of the technique is proposed to overcome this problem. A number of computer simulations confirm the ability of the modified FMCW technique to sound distributed media.

3.
Opt Express ; 16(3): 2206-20, 2008 Feb 04.
Article in English | MEDLINE | ID: mdl-18542300

ABSTRACT

Temporal analysis of the irradiance at the detector plane is intended as the first step in the study of the mean fade time in a free optical communication system. In the present work this analysis has been performed for a Gaussian laser beam propagating in the atmospheric turbulence by means of computer simulation. To this end, we have adapted a previously known numerical method to the generation of long phase screens. The screens are displaced in a transverse direction as the wave is propagated, in order to simulate the wind effect. The amplitude of the temporal covariance and its power spectrum have been obtained at the optical axis, at the beam centroid and at a certain distance from these two points. Results have been worked out for weak, moderate and strong turbulence regimes and when possible they have been compared with theoretical models. These results show a significant contribution of beam wander to the temporal behaviour of the irradiance, even in the case of weak turbulence. We have also found that the spectral bandwidth of the covariance is hardly dependent on the Rytov variance.


Subject(s)
Atmosphere , Communication , Lasers , Models, Theoretical , Radiometry/methods , Computer Simulation , Radiation Dosage , Scattering, Radiation
4.
Appl Opt ; 44(21): 4574-81, 2005 Jul 20.
Article in English | MEDLINE | ID: mdl-16047909

ABSTRACT

The beam-wander contribution to the scintillation in a ground-to-satellite free-space optical link is one of major importance. An analytical model, based on the duality between beam wander and angle-of-arrival fluctuations, is proposed for the temporal statistics. The expression of the probability density function of the log-amplitude fluctuations is first obtained. Then, the expressions of the spatial and temporal autocovariances are also obtained. We present plots of the beam-wander contribution to the log-amplitude variance, as a function of the transmitter aperture size and the turbulence accumulated in the propagation path. We also present the angular fluctuation and log-amplitude scintillation spectrum plots for some selected cases.

5.
Appl Opt ; 43(19): 3866-73, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15250553

ABSTRACT

In an optical communication link between an optical ground station and a geostationary satellite the main problems appear in the uplink and are due to beam wander and to scintillation. Reliable methods for modeling both effects simultaneously are needed to provide an accurate tool with which the robustness of the communication channel can be tested. Numerical tools, especially the split-step method (also referred to as the fast-Fourier-transform beam propagation method), have demonstrated their ability to deal with problems of optical propagation during atmospheric turbulence. However, obtaining statistically significant results with this technique is computationally intensive. We present an analytical-numerical hybrid technique that provides good information on the variance in optical irradiance with an important saving of time and computational resources.

SELECTION OF CITATIONS
SEARCH DETAIL