Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Blood Cancer ; 68(9): e29085, 2021 09.
Article in English | MEDLINE | ID: mdl-33913590

ABSTRACT

BACKGROUND/OBJECTIVES: Rhabdomyosarcoma (RMS) is characterized by the expression of the myogenic regulatory protein MYOD1. Histologic types include alveolar, embryonal (ERMS), and spindle cell sclerosing RMS (SRMS). SRMS harbors MYOD1 mutations in a subset of adult cases in association with poor prognosis. DESIGN/METHODS: To study the level of MYOD1 protein expression and its clinical significance, we have analyzed variable numbers of pediatric (<18 years of age) and adult (age range ≥18 to 35 years) ERMS and SRMS cases for presence or absence of MYOD1 immunoreactivity in correlation with clinical outcome and MYOD1 L122R mutations. RESULTS: Lack of MYOD1 immunoreactivity, identified in 23.8% of nonalveolar RMS (non-ARMS) cases, was more prevalent in SRMS (44%) than ERMS (17.2%) and was significantly associated with low overall survival and unfavorable tumor sites (p < .05). Lack of MYOD1 immunoreactivity was not associated with MYOD1 L122R mutations, which were identified in 3/37 (8%) cases including only two of 31 (6.5%) pediatric cases, one of 11 or 9% pediatric SRMS, and one case of infant ERMS. CONCLUSION: These studies highlight the prognostic role of MYOD1 in non-ARMS. Lack of MYOD1 immunoreactivity is associated with poor prognosis in ERMS and SRMS. MYOD1 gene mutations are generally infrequent in pediatric RMS. Although mutations are predominant in SRMS, they may exceptionally occur in infantile ERMS.


Subject(s)
Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Adolescent , Adult , Child , Humans , Infant , Mutation , MyoD Protein/genetics , Prognosis , Rhabdomyosarcoma/genetics , Young Adult
2.
Mol Cancer ; 16(1): 172, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29137633

ABSTRACT

BACKGROUND: Our understanding of the multiple roles exosomes play during tumor progression is still very poor and the contribution of the normal tissue derived exosomes in distant seeding and tumor outgrowth has also not been widely appreciated. METHODS: Using our all-human liver microphysiological system (MPS) platform as a model to closely recapitulate the early metastatic events, we isolated exosomes from both tumor cells and liver microenvironment. RESULTS: We observed that while priming of the hepatic niche (HepN) with MDA-231 breast cancer derived exosomes facilitated seeding of the cancer cells in the liver, subsequent tumor outgrowth was diminished; this was consistent with increased entry into dormancy. We found that hepatic niche (HepN) derived exosomes contribute significantly to the exosome pool and are distinguished from cancer derived exosomes based on their size, protein and miRNA content. By Ingenuity Pathway Analysis (IPA) of the miRNA content of the HepN, MDA-231/HepN and MDA-231 cells we showed that the HepN derived exosomes affect the breast cancer cells by suppressing pathways involved in cancer cell proliferation and invasion. More importantly exposure of MDA-231 and MDA-468 cells to purified normal HepN derived exosomes, induced changes in the cells consistent with a Mesenchymal to Epithelial reverting Transition (MErT). miRNA arrays performed on MDA-231 treated with Hum Hep/NPC derived exosomes showed significant changes in the levels of a select number of miRNAs involved in epithelial cell differentiation and miRNAs, such as miR186, miR23a and miR205, from our top and bottom bins have previously been reported to regulate E-cadherin transcription and MErT induction in various cancer types. Consistently HepN derived exosome treatment of breast and prostate cancer lines lead to a transient induction of E-cadherin and ZO-1 at the protein level and a more epithelial-like morphology of the cells. CONCLUSIONS: Collectively our data revealed a novel mechanism of regulation of the metastatic cascade, showing a well-orchestrated, timely controlled crosstalk between the cancer cells and the HepN and implicating for the first time the normal tissue/HepN derived exosomes in enabling seeding and entry into dormancy of the cancer cells at the metastatic site.


Subject(s)
Breast Neoplasms/metabolism , Exosomes/metabolism , Liver/cytology , Tumor Microenvironment , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Communication , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cells, Cultured , Coculture Techniques , Epithelial-Mesenchymal Transition , Exosomes/genetics , Female , Humans , Liver/metabolism , Liver/pathology , MicroRNAs/genetics
3.
Nat Immunol ; 17(5): 556-64, 2016 May.
Article in English | MEDLINE | ID: mdl-26974206

ABSTRACT

Homeostasis of the immune system depends on the proper function of regulatory T cells (T(reg) cells). Compromised suppressive activity of T(reg) cells leads to autoimmune disease and graft rejection and promotes anti-tumor immunity. Here we report a previously unrecognized requirement for the serine-threonine phosphatase PP2A in the function of T(reg) cells. T(reg) cells exhibited high PP2A activity, and T(reg) cell-specific ablation of the PP2A complex resulted in a severe, multi-organ, lymphoproliferative autoimmune disorder. Mass spectrometry revealed that PP2A associated with components of the mTOR metabolic-checkpoint kinase pathway and suppressed the activity of the mTORC1 complex. In the absence of PP2A, T(reg) cells altered their metabolic and cytokine profile and were unable to suppress effector immune responses. Therefore, PP2A is required for the function of T(reg) cells and the prevention of autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Lymphoproliferative Disorders/immunology , Protein Phosphatase 2/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Autoimmunity/genetics , Autoimmunity/immunology , Cells, Cultured , Ceramides/immunology , Ceramides/metabolism , Female , Flow Cytometry , Humans , Immunoblotting , Jurkat Cells , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/metabolism , Male , Mechanistic Target of Rapamycin Complex 1 , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Multiprotein Complexes/immunology , Multiprotein Complexes/metabolism , Phosphorylation/immunology , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/metabolism , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism
4.
Exp Biol Med (Maywood) ; 237(10): 1173-80, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23038705

ABSTRACT

The unfolded protein response (UPR) is triggered during stress of the endoplasmic reticulum (ER) and facilitates tissue homeostasis. Considering the role of p53 tumor suppressor gene in the interpretation of stress-inducing stimuli, in this study, we explored whether p53 modulates UPR. We found that p53 ablation resulted in a profound sensitivity to tunicamycin that was associated with liver dysfunction, ground glass hepatocyte (GGH) development and nuclear atypia/dysplasia. Binding immunoglobulin protein (BiP)/glucose-regulated protein 78 (GRP78) chaperone was readily detected in the cytoplasm of GGHs, confirming ER expansion. Tunicamycin administration induced BiP/GRP78 and GRP94 expression more potently in the p53-deficient mice than in controls and elevated phosphatidylcholine, the major lipid of ER, by a p53-dependent mechanism. Furthermore, alternative splicing of XBP1, the transcription factor that executes the UPR, was more efficient in cells which do not express p53. The cytoprotective effects of p53 were confirmed by cell viability studies, indicating that p53 deficiency conferred sensitivity against tunicamycin. Our findings show that p53 protects from the hepatotoxic effects of chronic ER stress. Stimulation of p53 activity when intense UPR is undesirable may possess therapeutic implications.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Hepatocytes/metabolism , Tumor Suppressor Protein p53/metabolism , Unfolded Protein Response/physiology , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Mammalian/metabolism , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum Chaperone BiP , Hepatocytes/cytology , Mice , Regulatory Factor X Transcription Factors , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , X-Box Binding Protein 1
5.
Horm Cancer ; 3(4): 172-80, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22441816

ABSTRACT

The expression of growth hormone-releasing hormone (GHRH) splice variant 1 (SV1) receptor in neoplastic lesions of the oral cavity was assessed. The sensitivity of HaCaT keratinocytes to GHRH analogs was also evaluated. Thirty-three benign precancerous oral lesions and 27 squamous cell carcinomas of the oral cavity were evaluated by immunohistochemistry for SV1 expression. SV1 expression in HaCaT keratinocytes was assessed by western blot. HaCaT proliferation was evaluated by cell counting. Anti-SV1 immunoreactivity was detected in only 9% (three of 33) precancerous lesions (one hyperplasia and two dysplasias), while 44% (12 of 27) carcinomas were positive for SV1 (p<0.002). GHRH(1-29)NH(2) and GHRH agonist JI-38 stimulated HaCaT proliferation in vitro, and this effect was blocked by GHRH antagonists. These results indicate that SV1 expression may be associated with the transition of precancerous lesions to carcinomas of the oral epithelium. GHRH antagonists may be useful for the management of the disease.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Adult , Aged , Alternative Splicing , Carcinoma, Squamous Cell/pathology , Cell Growth Processes/physiology , Cell Line, Tumor , Cell Movement/physiology , Female , Humans , Immunohistochemistry , Male , Middle Aged , Mouth Neoplasms/pathology
6.
Cell Oncol (Dordr) ; 34(5): 483-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21559927

ABSTRACT

BACKGROUND: Concerted alterations between stromal fibroblasts and neoplastic cells underline the carcinogenic process. Activation of alpha-smooth muscle actin (SMA) expression, a cytoskeleton protein normally expressed only in myoepithelial cells, is considered a landmark for the activation of stromal fibroblasts with little however being known regarding the mechanism governing the expression of SMA in the stroma. METHODS: We have evaluated by immunohistochemistry the expression of SMA in the stroma of oral malignant and pre-malignant lesions, in association with the expression of p53 and p21 tumor suppressors that were shown previously to be deregulated and/or mutated in stromal fibroblasts of various cancers. The effects of p21 knockdown in SMA expression and cell migration and the mRNA levels of endogenous p21 in fibroblasts co-cultured with cancer cells were also assessed. RESULTS: We found that both p21 and SMA expression was elevated in the stroma, but not the epithelium, of malignant as compared to pre-malignant lesions. We also noted that the expression of both was positively correlated, implying that SMA expression may be regulated by p21. Consistently with this notion we found that siRNA-mediated p21 suppression resulted in the reduction of SMA levels and also inhibited cell migration. CONCLUSION: Our results show that p21 deregulation is associated with the activation of stromal fibroblasts of oral cancers by a mechanism that involves the stimulation of SMA expression.

7.
Proc Natl Acad Sci U S A ; 107(43): 18611-5, 2010 Oct 26.
Article in English | MEDLINE | ID: mdl-20937882

ABSTRACT

Despite the well-documented action of growth hormone-releasing hormone (GHRH) on the stimulation of production and release of growth hormone (GH), the effects of GHRH in peripheral tissues are incompletely explored. In this study, we show that GHRH plays a role in wound healing and tissue repair by acting primarily on wound-associated fibroblasts. Mouse embryonic fibroblasts (MEFs) in culture and wound-associated fibroblasts in mice expressed a splice variant of the receptors for GHRH (SV1). Exposure of MEFs to 100 nM and 500 nM GHRH or the GHRH agonist JI-38 stimulated the expression of α-smooth muscle actin (αSMA) based on immunoblot analyses as well as the expression of an αSMA-ß-galactosidase reporter transgene in primary cultures of fibroblasts isolated from transgenic mice. Consistent with this induction of αSMA expression, results of transwell-based migration assays and in vitro wound healing (scratch) assays showed that both GHRH and GHRH agonist JI-38 stimulated the migration of MEFs in vitro. In vivo, local application of GHRH or JI-38 accelerated healing in skin wounds of mice. Histological evaluation of skin biopsies showed that wounds treated with GHRH and JI-38 were both characterized by increased abundance of fibroblasts during the early stages of wound healing and accelerated reformation of the covering epithelium at later stages. These results identify another function of GHRH in promoting skin tissue wound healing and repair. Our findings suggest that GHRH may have clinical utility for augmenting healing of skin wounds resulting from trauma, surgery, or disease.


Subject(s)
Growth Hormone-Releasing Hormone/agonists , Growth Hormone-Releasing Hormone/pharmacology , Wound Healing/drug effects , Actins/genetics , Animals , Cell Movement/drug effects , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/physiology , Gene Expression/drug effects , Growth Hormone-Releasing Hormone/analogs & derivatives , Growth Hormone-Releasing Hormone/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Wound Healing/genetics , Wound Healing/physiology
8.
Anal Cell Pathol (Amst) ; 33(1): 19-26, 2010.
Article in English | MEDLINE | ID: mdl-20966541

ABSTRACT

BACKGROUND: Concerted alterations between stromal fibroblasts and neoplastic cells underline the carcinogenic process. Activation of alpha-smooth muscle actin (SMA) expression, a cytoskeleton protein normally expressed only in myoepithelial cells, is considered a landmark for the activation of stromal fibroblasts with little however being known regarding the mechanism governing the expression of SMA in the stroma. METHODS: We have evaluated by immunohistochemistry the expression of SMA in the stroma of oral malignant and pre-malignant lesions, in association with the expression of p53 and p21 tumor suppressors that were shown previously to be deregulated and/or mutated in stromal fibroblasts of various cancers. The effects of p21 knockdown in SMA expression and cell migration and the mRNA levels of endogenous p21 in fibroblasts co-cultured with cancer cells were also assessed. RESULTS: We found that both p21 and SMA expression was elevated in the stroma, but not the epithelium, of malignant as compared to pre-malignant lesions. We also noted that the expression of both was positively correlated, implying that SMA expression may be regulated by p21. Consistently with this notion we found that siRNA-mediated p21 suppression resulted in the reduction of SMA levels and also inhibited cell migration. CONCLUSION: Our results show that p21 deregulation is associated with the activation of stromal fibroblasts of oral cancers by a mechanism that involves the stimulation of SMA expression.


Subject(s)
Actins/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Fibroblasts/metabolism , Mouth Neoplasms/metabolism , Stromal Cells/metabolism , Cells, Cultured , Coculture Techniques , Humans , Immunohistochemistry , Mouth Neoplasms/pathology , Precancerous Conditions , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...