Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Neurol ; 24(1): 211, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907197

ABSTRACT

BACKGROUND: Congenital myasthenic syndromes (CMS) are among the most challenging differential diagnoses in the neuromuscular domain, consisting of diverse genotypes and phenotypes. A mutation in the Docking Protein 7 (Dok-7) is a common cause of CMS. DOK7 CMS requires different treatment than other CMS types. Regarding DOK7's special considerations and challenges ahead of neurologists, we describe seven DOK7 patients and evaluate their response to treatment. METHODS: The authors visited these patients in the neuromuscular clinics of Tehran and Kerman Universities of Medical Sciences Hospitals. They diagnosed these patients based on clinical findings and neurophysiological studies, which Whole Exome Sequencing confirmed. For each patient, we tried unique medications and recorded the clinical response. RESULTS: The symptoms started from birth to as late as the age of 33, with the mean age of onset being 12.5. Common symptoms were: Limb-girdle weakness in 6, fluctuating symptoms in 5, ptosis in 4, bifacial weakness in 3, reduced extraocular movement in 3, bulbar symptoms in 2 and dyspnea in 2 3-Hz RNS was decremental in 5 out of 6 patients. Salbutamol was the most effective. c.1124_1127dupTGCC is the most common variant; three patients had this variant. CONCLUSION: We strongly recommend that neurologists consider CMS in patients with these symptoms and a similar familial history. We recommend prescribing salbutamol as the first-choice treatment option for DOK7 patients.


Subject(s)
Muscle Proteins , Myasthenic Syndromes, Congenital , Humans , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/diagnosis , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/physiopathology , Male , Female , Muscle Proteins/genetics , Adult , Young Adult , Adolescent , Child , Mutation
2.
Cureus ; 14(12): e32161, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36601184

ABSTRACT

Manganese (Mn) is an essential element used in many industries, such as welding, foundries, the production of metal alloys, especially stainless steel, and the production of dry batteries, pesticides, paints, and explosives. Individuals are exposed to Mn through inhalation of fumes, dermal absorption, and ingestion. This metal is an essential trace element required for normal growth, development, and cellular homeostasis. It has also toxic effects on the central nervous system and can cause Parkinsonism symptoms in exposed patients. Studies on human and animal models reveal that neurons of the globus pallidus, the cerebellum, pons, red nucleus, the thalamus, cortex, and the anterior horn of the spinal cord could be affected by Mn toxicity. Although the diagnosis of manganese-induced Parkinsonism is primarily clinical, there are some supporting features on brain MRI images that may be helpful to objectively distinguish it. This study was designed to review the ways of exposure to Mn, clinical symptoms in case of exposure, and discover the relationship between exposure to Mn and Parkinsonism in the working population.

SELECTION OF CITATIONS
SEARCH DETAIL
...