Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Imaging ; 28(8): 1066-77, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20399582

ABSTRACT

We investigate the relationship between the temporal variation in the magnitude of occipital visual evoked potentials (VEPs) and of haemodynamic measures of brain activity obtained using both blood oxygenation level dependent (BOLD) and perfusion sensitive (ASL) functional magnetic resonance imaging (fMRI). Volunteers underwent a continuous BOLD fMRI scan and/or a continuous perfusion-sensitive (gradient and spin echo readout) ASL scan, during which 30 second blocks of contrast reversing visual stimuli (at 4 Hz) were interleaved with 30 second blocks of rest (visual fixation). Electroencephalography (EEG) and fMRI were simultaneously recorded and following EEG artefact cleaning, VEPs were averaged across the whole stimulation block (120 reversals, VEP(120)) and at a finer timescale (15 reversals, VEP(15)). Both BOLD and ASL time-series were linearly modelled to establish: (1) the mean response to visual stimulation, (2) transient responses at the start and end of each stimulation block, (3) the linear decrease between blocks, (4) the nonlinear between-block variation (covariation with VEP(120)), (5) the linear decrease within block and (6) the nonlinear variation within block (covariation with VEP(15)). VEPs demonstrated a significant linear time-dependent reduction in amplitude, both within and between blocks of stimulation. Consistent with the VEPs finding, both BOLD and perfusion measures showed significant linear time-dependent reductions in response amplitude between blocks. In addition, there were significant linear time-dependent within-block reductions in BOLD response as well as between-block variations positively correlating with VEP(120) (medial occipital and frontal) and within-block variations positively correlating with VEP(15) (occipital and thalamus). Both electrophysiological and haemodynamic (BOLD and ASL) measures of visual activity showed steady habituation through the experiment. Beyond this, the VEP measures were predictive of shorter timescale (3-30 second) localised variations in BOLD response engaging both occipital cortex and other regions such as anterior cingulate and parietal regions, implicating attentional processes in the modulation of the VEP signal.


Subject(s)
Brain/pathology , Oxygen/blood , Photic Stimulation , Adult , Artifacts , Electroencephalography/methods , Electrophysiology/methods , Female , Hemodynamics , Humans , Magnetic Resonance Imaging/methods , Male , Perfusion , Thalamus/pathology , Time Factors
2.
Neuroimage ; 49(1): 849-64, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19591945

ABSTRACT

We recorded auditory-evoked potentials (AEPs) during simultaneous, continuous fMRI and identified trial-to-trial correlations between the amplitude of electrophysiological responses, characterised in the time domain and the time-frequency domain, and the hemodynamic BOLD response. Cortical AEPs were recorded from 30 EEG channels within the 3 T MRI scanner with and without the collection of simultaneous BOLD fMRI. Focussing on the Cz (vertex) EEG response, single-trial AEP responses were measured from time-domain waveforms. Furthermore, a novel method was used to characterise the single-trial AEP response within three regions of interest in the time-frequency domain (TF-ROIs). The latency and amplitude values of the N1 and P2 AEP peaks during fMRI scanning were not significantly different from the Control session (p>0.16). BOLD fMRI responses to the auditory stimulation were observed in bilateral secondary auditory cortices as well as in the right precentral and postcentral gyri, anterior cingulate cortex (ACC) and supplementary motor cortex (SMC). Significant single-trial correlations were observed with a voxel-wise analysis, between (1) the magnitude of the EEG TF-ROI1 (70-800 ms post-stimulus, 1-5 Hz) and the BOLD response in right primary (Heschl's gyrus) and secondary (STG, planum temporale) auditory cortex; and (2) the amplitude of the P2 peak and the BOLD response in left pre- and postcentral gyri, the ACC and SMC. No correlation was observed with single-trial N1 amplitude on a voxel-wise basis. An fMRI-ROI analysis of functionally-identified auditory responsive regions identified further single-trial correlations of BOLD and EEG responses. The TF amplitudes in TF-ROI1 and TF-ROI2 (20-400 ms post-stimulus, 5-15 Hz) were significantly correlated with the BOLD response in all bilateral auditory areas investigated (planum temporale, superior temporal gyrus and Heschl's gyrus). However the N1 and P2 peak amplitudes, occurring at similar latencies did not show a correlation in these regions. N1 and P2 peak amplitude did correlate with the BOLD response in bilateral precentral and postcentral gyri and the SMC. Additionally P2 and TF-ROI1 both correlated with the ACC. TF-ROI3 (400-900 ms post-stimulus, 4-10 Hz) correlations were only observed in the ACC and SMC. Across the group, the subject-mean N1 peak amplitude correlated with the BOLD response amplitude in the primary and secondary auditory cortices bilaterally, as well as the right precentral gyrus and SMC. We confirm that auditory-evoked EEG responses can be recorded during continuous and simultaneous fMRI. We have presented further evidence of an empirical single-trial coupling between the EEG and BOLD fMRI responses, and show that a time-frequency decomposition of EEG signals can yield additional BOLD fMRI correlates, predominantly in auditory cortices, beyond those found using the evoked response amplitude alone.


Subject(s)
Auditory Cortex/physiology , Electroencephalography , Evoked Potentials, Auditory/physiology , Magnetic Resonance Imaging , Acoustic Stimulation , Adult , Artifacts , Data Interpretation, Statistical , Electrophysiology , Female , Humans , Image Processing, Computer-Assisted , Male , Oxygen/blood , Principal Component Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...